Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geoscientists Use Numerical Model to Better Forecast Forces Behind Earthquakes

Stony Brook University researchers have devised a numerical model to help explain the linkage between earthquakes and the powerful forces that cause them, according to a research paper scheduled to be published in the journal Science on Feb. 17. Their findings hold implications for long-term forecasting of earthquakes.

William E. Holt, Ph.D., a professor in the Geosciences Department at Stony Brook University, and Attreyee Ghosh, Ph.D., a post doctoral associate, used their model to help explain the stresses that act on the Earth’s tectonic plates. Those stresses result in earthquakes not only at the boundaries between tectonic plates, where most earthquakes occur, but also in the plate interiors, where the forces are less understood, according to their paper, "Plate Motions and Stresses from Global Dynamic Models."

“If you take into account the effects of topography and all density variations within the plates – the earth’s crust varies in thickness depending on where you are – if you take all that into account, together with the mantle convection system, you can do a good job explaining what is going on at the surface,” said Dr. Holt.

Their research focused on the system of plates that float on the Earth’s fluid-like mantle, which acts as a convection system on geologic time scales, carrying them and the continents that rest upon them. These plates bump and grind past one another, diverge from one another, or collide or sink (subduct) along the plate boundary zones of the world. Collisions between the continents have produced spectacular mountain ranges and powerful earthquakes. But the constant stress to which the plates are subjected also results in earthquakes within the interior of those plates.

“Predicting plate motions correctly, along with stresses within the plates, has been a challenge for global dynamic models,” the researchers wrote. “Accurate predictions of these is vitally important for understanding the forces responsible for the movement of plates, mountain building, rifting of continents, and strain accumulation released in earthquakes.”

Data for their global computer model came from Global Positioning System (GPS) measurements, which track the movements of the Earth’s crust within the deforming plate boundary zones; measurements on the orientation of the Earth’s stress field gleaned from earthquake faults; and a network of global seismometers that provided a picture of the Earth’s interior density variations. They compared output from their model with these measurements from the Earth’s surface.

“These observations – GPS, faults – allow one to test the completeness of the model,” Dr. Holt said.

Drs. Ghosh and Holt found that plate tectonics is an integrated system, driven by density variations found between the surface of the Earth all the way to the Earth’s core-mantle boundary. A surprising find was the variation in influence between relatively shallow features (topography and crustal thickness variations) and deeper large-scale mantle flow patterns that assist and, in some places, resist plate motions. Ghosh and Holt also found that it is the large-scale mantle flow patterns, set up by the long history of sinking plates, that are important for influencing the stresses within, and motions of, the plates.

Topography also has a major influence on the plate tectonic system, the researchers found. That result suggests a powerful feedback between the forces that make the topography and the ‘push-back’ on the system exerted by the topography, they explained.

While their model cannot accurately predict when and where earthquakes will occur in the short-term, “it can help at better understanding or forecasting earthquakes over longer time spans,” Dr. Holt said. “Nobody can yet predict, but ultimately given a better understanding of the forces within the system, one can develop better forecast models.”

William E. Holt | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>