Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoscientists Drill For Earth Secrets Under Arctic Lake

22.12.2008
An international science team drills for sediment and meteorite breccia cores more than 3 million years old, from a meteorite crater, Lake El'gygytgyn, north of the Arctic Circle. This longest continuous climate record ever collected in the Arctic will answer questions about Earth's paleoclimate.

In the next few days, a convoy of bulldozers and trucks will set out from a remote airport in Siberia, heading for a frozen lake 62 miles north of the Arctic Circle, but the trip isn’t a holiday visit to the North Pole. Instead, the trucks will deliver core-drilling equipment for a study of sediment and meteorite-impact rocks that should provide the longest time-continuous climate record ever collected in the Arctic.

Once in place next month, the drilling will allow an international team of geoscientists led by Julie Brigham-Grette of the University of Massachusetts Amherst and Martin Melles of the University of Cologne, Germany, to burrow back in time, retrieving core samples more than 3 million years old and answering questions about Earth’s ancient past.

Almost impossibly remote, Lake El’gygytgyn (pronounced el’geegitgin), 11 miles in diameter, was formed 3.6 million years ago when a monster meteor, more than a half-mile across, slammed into the Earth between the Arctic Ocean and the Bering Sea. Because this part of the Arctic was never covered by ice sheets or glaciers, it has received a steady drift of sediment – as much as a quarter mile (1,312 feet or 400 meters) deep – since impact. Thus, it offers a continuous depositional record unlike any other in the world, say Brigham-Grette and colleagues, beneath the crater lake that’s just over 560 feet deep, equal to the height of the Washington Monument.

This week’s convoy will take 25 days to crawl through the frozen dark, building a 224-mile ice road as they go, over which the heavy drilling equipment can be moved from the remote airstrip at Pevek, in the north of Russia’s Chukotka Autonomous Region. “Lake El’gygytgyn is logistically among the most difficult places on Earth to carry out a scientific drilling program,” Brigham-Grette acknowledges. But by all accounts, the rewards should be worth all the effort.

In preparation for this day, scientists from institutes in Germany, Russia and Austria as well as UMass Amherst have been flying in by helicopter for focused tests over the past 10 years, drilling pilot cores and taking other samples and measurements. The site has passed every test. For example, the lake bed has been undisturbed by earthquakes, other underground shifting or drying for thousands of years. Pilot cores of 16.7 meters long (54 feet) have already provided a snapshot of climate from 300,000 years ago.

El’gygytgyn thus offers a truly unprecedented and ideal opportunity, Brigham-Grette notes, for piecing together a clearer picture of the hemisphere’s prehistoric climate and the dynamic processes of global climate change since the meteor’s impact. Notably, the researchers hope they can learn more about the unexplained shift from a warm forest ecology to permafrost, some 2 million to 3 million years ago. Comparing cores from under Lake El’gygytgyn to those from lower latitudes will help the climate scientists with a high-resolution tool to study climatic change across northeast Asia “at millennial timescales,” Brigham-Grette says. In addition to climate data, cores may offer the researchers an opportunity to study the 3.6-million-year-old “impact breccia,” that is, how Earth’s bedrock responded to the meteor’s impact.

Some sampling began in November at the science camp drilling site on the lakeshore, where researchers will study the climate history of the permafrost (frozen ground) that surrounds the lake. The other two drill sites will be in the deepest part of the lake. Waiting until Arctic winter to transport and install the equipment, the team can use the frozen lake surface to support drills specially designed to withstand the extreme weather conditions. The scientists plan to start drilling overlapping cores at these frigid locations in February using the windswept lake ice as a drilling platform. Sampling will continue until May 2009, as part of the International Continental Scientific Drilling Program (ICDP).

To ensure the safety of both scientists and drill-team members on the isolated lake in potentially life-threatening conditions, Brigham-Grette and colleagues have scrutinized how the ice shifts, cracks, and responds to heavy wind and circulation forces before settling on rig placement. Workers and scientists will live in a protected personnel carrier that will also transport cores from the rig on the lake ice to the science camp on the shore.

Sediment cores will be processed for shipment and stored at the lake in a temperature-controlled container until they can be flown to St. Petersburg and later trucked to the University of Cologne, Germany, for study by the international team. An “archive half” of each core will also be stored at the University of Minnesota.

The international collaboration is funded by the U.S. National Science Foundation, the German Federal Ministry for Education and Research, the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, and GeoForschungsZentrum, Potsdam. In addition to UMass Amherst, investigators from the Russian Academy of Sciences’ Far East Geological Institute, Vladivostok, the Northeast Interdisciplinary Scientific Research Institute, Magadan, and Roshydromet’s Arctic and Antarctic Research Institute, St. Petersburg, are taking part.

Janet Lathrop | Newswise Science News
Further information:
http://www.umass.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>