Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geosciences Professor Predicts Stable Compounds of Oxygen and “Inert” Gas Xenon

13.11.2012
An international team led by Artem R. Oganov, PhD, a professor of theoretical crystallography in the Department of Geosciences and Department of Physics and Astronomy at Stony Brook University, has established stability of several oxides of normally inert xenon.

These compounds are predicted to be stable at high pressures above 830,000 atmospheres, i.e. at pressures corresponding to the Earth’s mantle and readily achievable in the laboratory. The results of their work, "Xenon oxides and silicates at high pressures,” were published November 11 in Nature Chemistry(1)

Dr. Oganov and his team used Oganov’s novel method for crystal structure prediction, which allowed them to find optimal structures and compositions of new compounds at any given pressure. In this work, they applied it to finding stable xenon oxides and silicates.

It has earlier been suggested that xenon oxides or silicates are formed in Earth’s interior, and prevent xenon from escaping into the atmosphere – thus explaining the “missing xenon paradox”, i.e. the observed order-of-magnitude depletion of xenon in the atmosphere.

“Xenon has to be stored in Earth’s mantle, otherwise we would have to admit that the existing chemical models of the Earth are deficient, probably as a result of an unknown cosmochemical process that removed xenon from the Earth,” said Oganov. “We have found that while xenon silicates cannot be stable at pressures of the Earth’s mantle, xenon oxides do become stable at these conditions.

However, these are extremely strong oxidants and cannot exist in the reducing environment of the Earth’s deep mantle. Our work, however, suggest another possibility – since strong Xe-O bonds can be formed under pressure, xenon atoms can be trapped and retained by defects and grain boundaries of mantle minerals, and our simulations give suggestions for local geometries of such trapping sites.”

In addition to solving an important geological puzzle, present results shed light on the still elusive chemistry of xenon. The very possibility of xenon, an inert gas, to form stable chemical compounds with fluorine and oxygen, was proposed theoretically by Pauling in 1932 and verified in 1962 in landmark experiments by Neil Bartlett.

However, only xenon fluorides were found to be thermodynamically stable; xenon oxides turned out to be unstable to decomposition into xenon and oxygen, with some decomposing explosively. The work of Oganov’s group for the first time finds stable xenon oxides, and concludes that high pressure is necessary for their stability.

The new structures are very rich in chemistry: with increasing pressure, increasing oxidation states of xenon are found, from +2 to +4 to +6. Predictions include some very unusual structures; for example, the P42/mnm phase of XeO3 contains linear chains of O2 molecules, which partially dissociate on increasing pressure. The authors found a very clear electronic signature of different valence states of xenon in different structures – something that could pave the way for new advances in the theory of chemical bonding. Another surprise was the unexpectedly high (50%) degree of ionicity in these semiconducting compounds.

“Chemical bonding appears to be simpler than expected by many,” said graduate student Qiang Zhu, the lead author of this paper. “You don’t need to invoke d-orbitals and exotic types of hybridization of Xe atoms. Bonding is significantly ionic; valence states differ by the number of p-electrons removed from Xe atoms, and pressure is essential for enabling such significantly ionic bonding”. Pressure-induced ionization, observed in many other compounds and even pure elements, appears to soften interatomic repulsions.

“In addition to providing a likely solution to the missing xenon paradox and clarifying essential aspects of xenon chemistry, our study may result in practical applications,” says Oganov. “For example, the ability of xenon to form strong chemical bonds with oxygen and other elements, and to be trapped in crystalline defects, suggests their use as non-classical luminescence centers and active sites for catalysis”.

(1) Zhu Q., Jung D.Y., Oganov A.R., Glass C.W., Gatti C., Lyakhov A.O. Stability of xenon oxides at high pressures. Nature Chemistry doi:10.1038/nchem.1497 (2012). http://www.nature.com/nchem/journal/vaop/ncurrent/pdf/nchem.1497.pdf

Artem R. Oganov | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>