Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How should geophysics contribute to disaster planning?

17.05.2013
Identifying natural hazards is only a part of what the field should do, analysis suggests, and effective disaster risk reduction strategies integrate many different experts on community level

Earthquakes, tsunamis, and other natural disasters often showcase the worst in human suffering – especially when those disasters strike populations who live in rapidly growing communities in the developing world with poorly enforced or non-existent building codes.

This week in Cancun, a researcher from Yale-National University of Singapore (NUS) College in Singapore is presenting a comparison between large-scale earthquakes and tsunamis in different parts of the world, illustrating how nearly identical natural disasters can play out very differently depending on where they strike.

The aim of the talk at the 2013 Meeting of the Americas, which is sponsored by the American Geophysical Union (AGU), is to focus on the specific role geoscientists can play in disaster risk reduction and how their work should fit in with the roles played by other experts for any given community.

"To reduce the losses from these disasters, a diverse group of researchers, engineers, and policy makers need to come together to benefit from each other's expertise," said Brian McAdoo, professor of science at Yale-NUS College. "Geophysicists play a crucial role in natural hazard identification and determining the key questions of, how often does a geophysical hazard affect a given area and how big will it be when it hits?" McAdoo said. "We need to be aware of how this information is incorporated into the disaster planning architecture."

San Francisco, Haiti, and New Zealand

In his talk, McAdoo will present case studies that he and his colleague Vivienne Bryner compiled comparing death counts and economic fallout following geophysical events of similar magnitude in areas with different levels of economic development.

What their analysis shows is that deaths tend to be higher in poor countries exposed to severe natural disasters because of existing socioeconomic, environmental, and structural vulnerabilities. At the same time, economic losses tend to be higher in developed nations, but developing countries may be less able to absorb those economic losses that do occur.

As an example, he points to the earthquakes that hit Haiti, San Francisco, and Christchurch and Canterbury, New Zealand, in 2010, 1989 and 2010-2011. While the quakes were nearly identical in magnitude, the consequences of these natural disasters were remarkably different.

Some 185 people died in the 2011 Canterbury earthquake, which was preceded by the larger Christchurch quake in 2010 in which nobody died. Both quakes and their aftershocks cost New Zealand about $6.5 billion, which was approximately 10-20 percent of its gross domestic product (GDP). The 1989 San Francisco earthquake killed 63 people, and it cost $5.6 billion (the equivalent of about $10 billion in 2010 dollars). The U.S. economy is so large, however, that it only caused a one-tenth of one percent drop in U.S. GDP. The 2011 earthquake in Haiti, on the other hand, killed some 200,000 people and resulted in economic losses approaching an estimated $8 billion, which is more than 80 percent of Haiti's GDP.

To address such disparities, McAdoo advocates what is known as Disaster Risk Reduction (DRR) decision making – a framework for finding solutions to best prepare for natural disasters, lessen their impact, and sensibly engage in post-disaster reconstruction. For such planning to work, he said, it must be broad-based.

"We won't ever be able to prevent disasters," he said. "The only way we will effectively minimize the effects of hazards is to collaborate across academic disciplines, businesses, governments, NGOs, and perhaps most critically the exposed community."

"Planning for any sort of natural disaster takes insight into what may be expected, which necessarily includes the important perspective of scientists," added Philip ("Bo") Hammer, Associate Vice President for Physics Resources at the American Institute of Physics (AIP) and co-organizer of the session in which McAdoo is speaking. "One reason why we organized this session in the first place was to encourage the sharing of such perspectives within the context of how geophysicists can build local capacity, not only for dealing with acute issues such as disasters, but also longer term challenges like building capacity for economic growth."

The talk, "Building Capacity for Disaster Risk Reduction," will be presented by Brian G. McAdoo and Vivienne Bryner on Friday, May 17, 2013, at the 2013 Meeting of the Americas in Cancún, Mexico. McAdoo is affiliated with Yale-NUS College in Singapore, and Bryner is at University of Otago in Dunedin, New Zealand.

About the 2013 Meeting of the Americas

Around 1,500 scientists are expected to present new findings in the Earth and space sciences in Cancún at the 2013 Meeting of the Americas. Organizers of the meeting, which takes place 14-17 May, are planning scientific sessions on such subjects as the 2012 Costa Rica earthquake, the Chicxulub impact crater, natural hazard monitoring in the Caribbean, new solar exploration missions and much more. All scientific sessions take place in the Cancún Center, Quintana Roo, Mexico. More meeting information can be accessed at: http://www.agu.org/news/press/pr_archives/2013/2013-09.shtml.

This press release was prepared by the American Institute of Physics (AIP).

About American Institute of Physics

The American Institute of Physics is an organization of 10 physical science societies, representing more than 135,000 scientists, engineers, and educators. Through its Physics Resources Center, AIP delivers valuable services and expertise in education and student programs, science communications, government relations, career services for science and engineering professionals, statistical research in physics employment and education, industrial outreach, and the history of physics and allied fields. AIP publishes the flagship magazine, Physics Today, and is also home to Society of Physics Students and the Niels Bohr Library and Archives. AIP owns AIP Publishing LLC, a scholarly publisher in the physical and related sciences.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>