Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How should geophysics contribute to disaster planning?

Identifying natural hazards is only a part of what the field should do, analysis suggests, and effective disaster risk reduction strategies integrate many different experts on community level

Earthquakes, tsunamis, and other natural disasters often showcase the worst in human suffering – especially when those disasters strike populations who live in rapidly growing communities in the developing world with poorly enforced or non-existent building codes.

This week in Cancun, a researcher from Yale-National University of Singapore (NUS) College in Singapore is presenting a comparison between large-scale earthquakes and tsunamis in different parts of the world, illustrating how nearly identical natural disasters can play out very differently depending on where they strike.

The aim of the talk at the 2013 Meeting of the Americas, which is sponsored by the American Geophysical Union (AGU), is to focus on the specific role geoscientists can play in disaster risk reduction and how their work should fit in with the roles played by other experts for any given community.

"To reduce the losses from these disasters, a diverse group of researchers, engineers, and policy makers need to come together to benefit from each other's expertise," said Brian McAdoo, professor of science at Yale-NUS College. "Geophysicists play a crucial role in natural hazard identification and determining the key questions of, how often does a geophysical hazard affect a given area and how big will it be when it hits?" McAdoo said. "We need to be aware of how this information is incorporated into the disaster planning architecture."

San Francisco, Haiti, and New Zealand

In his talk, McAdoo will present case studies that he and his colleague Vivienne Bryner compiled comparing death counts and economic fallout following geophysical events of similar magnitude in areas with different levels of economic development.

What their analysis shows is that deaths tend to be higher in poor countries exposed to severe natural disasters because of existing socioeconomic, environmental, and structural vulnerabilities. At the same time, economic losses tend to be higher in developed nations, but developing countries may be less able to absorb those economic losses that do occur.

As an example, he points to the earthquakes that hit Haiti, San Francisco, and Christchurch and Canterbury, New Zealand, in 2010, 1989 and 2010-2011. While the quakes were nearly identical in magnitude, the consequences of these natural disasters were remarkably different.

Some 185 people died in the 2011 Canterbury earthquake, which was preceded by the larger Christchurch quake in 2010 in which nobody died. Both quakes and their aftershocks cost New Zealand about $6.5 billion, which was approximately 10-20 percent of its gross domestic product (GDP). The 1989 San Francisco earthquake killed 63 people, and it cost $5.6 billion (the equivalent of about $10 billion in 2010 dollars). The U.S. economy is so large, however, that it only caused a one-tenth of one percent drop in U.S. GDP. The 2011 earthquake in Haiti, on the other hand, killed some 200,000 people and resulted in economic losses approaching an estimated $8 billion, which is more than 80 percent of Haiti's GDP.

To address such disparities, McAdoo advocates what is known as Disaster Risk Reduction (DRR) decision making – a framework for finding solutions to best prepare for natural disasters, lessen their impact, and sensibly engage in post-disaster reconstruction. For such planning to work, he said, it must be broad-based.

"We won't ever be able to prevent disasters," he said. "The only way we will effectively minimize the effects of hazards is to collaborate across academic disciplines, businesses, governments, NGOs, and perhaps most critically the exposed community."

"Planning for any sort of natural disaster takes insight into what may be expected, which necessarily includes the important perspective of scientists," added Philip ("Bo") Hammer, Associate Vice President for Physics Resources at the American Institute of Physics (AIP) and co-organizer of the session in which McAdoo is speaking. "One reason why we organized this session in the first place was to encourage the sharing of such perspectives within the context of how geophysicists can build local capacity, not only for dealing with acute issues such as disasters, but also longer term challenges like building capacity for economic growth."

The talk, "Building Capacity for Disaster Risk Reduction," will be presented by Brian G. McAdoo and Vivienne Bryner on Friday, May 17, 2013, at the 2013 Meeting of the Americas in Cancún, Mexico. McAdoo is affiliated with Yale-NUS College in Singapore, and Bryner is at University of Otago in Dunedin, New Zealand.

About the 2013 Meeting of the Americas

Around 1,500 scientists are expected to present new findings in the Earth and space sciences in Cancún at the 2013 Meeting of the Americas. Organizers of the meeting, which takes place 14-17 May, are planning scientific sessions on such subjects as the 2012 Costa Rica earthquake, the Chicxulub impact crater, natural hazard monitoring in the Caribbean, new solar exploration missions and much more. All scientific sessions take place in the Cancún Center, Quintana Roo, Mexico. More meeting information can be accessed at:

This press release was prepared by the American Institute of Physics (AIP).

About American Institute of Physics

The American Institute of Physics is an organization of 10 physical science societies, representing more than 135,000 scientists, engineers, and educators. Through its Physics Resources Center, AIP delivers valuable services and expertise in education and student programs, science communications, government relations, career services for science and engineering professionals, statistical research in physics employment and education, industrial outreach, and the history of physics and allied fields. AIP publishes the flagship magazine, Physics Today, and is also home to Society of Physics Students and the Niels Bohr Library and Archives. AIP owns AIP Publishing LLC, a scholarly publisher in the physical and related sciences.

Jason Socrates Bardi | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>