Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicists Rush to Chile To Study Ongoing Earthquake Aftershocks

22.03.2010
A team of geophysicists led by Rensselaer Polytechnic Institute Professor Steven Roecker is in Chile to study the scope and strength of aftershocks that continue to rattle the area following the massive Feb. 27 8.8-magnitude earthquake. The 10-member team, which was assembled quickly from universities around the United States, will be putting in place more than 50 broadband seismometers throughout the impacted area in Chile.

“This earthquake is the fifth largest megathrust earthquake to be recorded,” said Roecker, professor of earth and environmental sciences at Rensselaer. “As such, it presents scientists with an unprecedented opportunity to study the aftershocks and related geologic phenomena.”

The research is funded by a Rapid Response Research (RAPID) grant from the National Science Foundation (NSF).

The aftershocks, which range from minor vibrations to substantial earthquakes such as the 6.9-magnitude aftershock that occurred on March 11, could go on for more than a year following an earthquake of this magnitude, according to Roecker. The array of seismometers to be installed over the next several weeks will record all seismic activity along a 500-kilometer zone stretching south of the city of Santiago.

“We are looking to capture as much seismic activity as we can,” he said. “What geophysicists know is that the Earth does substantial readjusting right after an earthquake, so quick monitoring in the aftermath is essential. Seeing these geologic modifications in real time gives us the chance to study the normally slow physical changes that occur under the earth extremely fast. We can acquire a wealth of knowledge on some of the most basic, million-year processes of the Earth in a few months.”

The scientists can also start to pull together important clues about what exactly occurred under the earth in Chile on Feb. 27, Roecker said.

The overall goal of the project is to produce an open source of data on the earthquake for a large range of existing scientific projects. Some potential uses for the important data include studies on the potential for other earthquakes in the region, the development of seismic images of the fault zone and how that is changing over time, the identification of stress patterns in the surrounding portions of the fault zone, and comparisons between other active geologic zones in the world.

“A large earthquake was not unexpected in Chile. But, what we already know is that the exact location of this earthquake was a bit unexpected,” Roecker said. “The northern portion of this fault was expected to slip first. The fact that the southern portion was the part to rupture leads to many questions about the additional strain that has accumulated at the already tenuous edges to the north.” The data being provided by the research excursion could provide important clues about the stability at the edges of seismic zone.

Roecker and members of the team expect to return to Chile several times over the next six months to continue their studies and equipment setup. He hopes that Rensselaer students will have the opportunity to travel with him on these future trips.

Roecker, who is also an active teacher at Rensselaer, focuses his research on the gathering and analysis of geophysical data. He utilizes information from seismometers as well as Global Position Systems (GPS) and studies of gravity to learn how the earth moves over time. His research takes him frequently to Tibet and Central Asia. He began a partnership with scientists in Chile more than 20 years ago and most recently received a Fulbright scholarship to continue his study of the subsurface geology in the country.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>