Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicists Rush to Chile To Study Ongoing Earthquake Aftershocks

22.03.2010
A team of geophysicists led by Rensselaer Polytechnic Institute Professor Steven Roecker is in Chile to study the scope and strength of aftershocks that continue to rattle the area following the massive Feb. 27 8.8-magnitude earthquake. The 10-member team, which was assembled quickly from universities around the United States, will be putting in place more than 50 broadband seismometers throughout the impacted area in Chile.

“This earthquake is the fifth largest megathrust earthquake to be recorded,” said Roecker, professor of earth and environmental sciences at Rensselaer. “As such, it presents scientists with an unprecedented opportunity to study the aftershocks and related geologic phenomena.”

The research is funded by a Rapid Response Research (RAPID) grant from the National Science Foundation (NSF).

The aftershocks, which range from minor vibrations to substantial earthquakes such as the 6.9-magnitude aftershock that occurred on March 11, could go on for more than a year following an earthquake of this magnitude, according to Roecker. The array of seismometers to be installed over the next several weeks will record all seismic activity along a 500-kilometer zone stretching south of the city of Santiago.

“We are looking to capture as much seismic activity as we can,” he said. “What geophysicists know is that the Earth does substantial readjusting right after an earthquake, so quick monitoring in the aftermath is essential. Seeing these geologic modifications in real time gives us the chance to study the normally slow physical changes that occur under the earth extremely fast. We can acquire a wealth of knowledge on some of the most basic, million-year processes of the Earth in a few months.”

The scientists can also start to pull together important clues about what exactly occurred under the earth in Chile on Feb. 27, Roecker said.

The overall goal of the project is to produce an open source of data on the earthquake for a large range of existing scientific projects. Some potential uses for the important data include studies on the potential for other earthquakes in the region, the development of seismic images of the fault zone and how that is changing over time, the identification of stress patterns in the surrounding portions of the fault zone, and comparisons between other active geologic zones in the world.

“A large earthquake was not unexpected in Chile. But, what we already know is that the exact location of this earthquake was a bit unexpected,” Roecker said. “The northern portion of this fault was expected to slip first. The fact that the southern portion was the part to rupture leads to many questions about the additional strain that has accumulated at the already tenuous edges to the north.” The data being provided by the research excursion could provide important clues about the stability at the edges of seismic zone.

Roecker and members of the team expect to return to Chile several times over the next six months to continue their studies and equipment setup. He hopes that Rensselaer students will have the opportunity to travel with him on these future trips.

Roecker, who is also an active teacher at Rensselaer, focuses his research on the gathering and analysis of geophysical data. He utilizes information from seismometers as well as Global Position Systems (GPS) and studies of gravity to learn how the earth moves over time. His research takes him frequently to Tibet and Central Asia. He began a partnership with scientists in Chile more than 20 years ago and most recently received a Fulbright scholarship to continue his study of the subsurface geology in the country.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>