Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicists employ novel method to identify sources of global sea level rise

25.04.2012
As the Earth's climate warms, a melting ice sheet produces a distinct and highly non-uniform pattern of sea-level change, with sea level falling close to the melting ice sheet and rising progressively farther away. The pattern for each ice sheet is unique and is known as its sea level fingerprint.

Now, a group of geophysicists from the University of Toronto, Harvard and Rutgers Universities have found a way to identify the sea level fingerprint left by a particular ice sheet, and possibly enable a more precise estimate of its impact on global sea levels.

"Our findings provide a new method to distinguish sea-level fingerprints in historical records of sea levels, from other processes such as ocean waves, tides, changes in ocean circulation, and thermal expansion of the ocean," says Carling Hay, a Ph D candidate in the Department of Physics at the University of Toronto and lead author of a study published in Proceedings of the National Academy of Sciences (PNAS). "It may indeed allow us to estimate the contributions of individual ice sheets to rising global sea levels."

Scientists around the world are trying to estimate both the current rate of sea level rise and the rates of ice sheet melting, and yet little work has been done to combine the two problems and answer these questions simultaneously.

Hay and colleagues Jerry Mitrovica and Eric Morow of Harvard University, and Robert E. Kopp of Rutgers University sought out statistical techniques that had not previously been applied to this problem, and began developing the new method using data analysis techniques common in other fields such as engineering science, economics, and meteorology. The researchers then tested and refined the method by applying it to synthetic data sets – i.e., data sets with the same amount of noise as real data, but with known melting signals. The tests provide important guidance for the application of the method to actual sea-level records.

"We are now applying our methodology to historical sea level records to provide a new estimate of total sea level rise and the melt rates of the Greenland and West Antarctic ice sheets, over the 20th century," says Hay. "Preliminary results show intriguing evidence for acceleration of globally averaged sea-level rise in the second half of the period, along with a simultaneous rise in temperature. Once our study of historical records is complete, the next step will be to incorporate satellite-based measurements of sea-level changes."

The findings are reported in the paper "Estimating the sources of global sea level rise with data assimilation techniques." The research is supported by funding from the Canadian Institute for Advanced Research, Harvard University, and the US Department of Energy American Association for the Advancement of Science Fellowship Program.

MEDIA CONTACTS:
Carling Hay
Department of Physics
University of Toronto
chay@atmosp.physics.utoronto.ca
617-899-3323
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>