Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Geophysicist's Guide to Striking It Rich

01.09.2011
TAU researchers develop integrated method for oil and gas survey

Prospecting — the search for valuable reserves such as gold, diamond and natural gas — isn't just a matter of luck. It's about knowing where to look. Now researchers at Tel Aviv University have modernized the hit-or-miss search with cutting-edge technology that scans the earth for signs of lucrative resources that could lurk beneath our feet.

Combining a number of surveying techniques for the first time, Prof. Lev Eppelbaum of TAU's Department of Geophysics and Planetary Sciences at the Raymond and Beverly Sackler Faculty of Exact Sciences and Dr. Youri Katz of TAU's Department of Zoology at the George S. Wise Faculty of Life Sciences have carried out a more accurate and in-depth land survey of Israel and the surrounding Mediterranean area than ever before. Their findings pinpoint the most likely places to find reservoirs of natural gas and oil.

Fifteen years in the making, their technique, which recently appeared in the journal Positioning, can be applied to any region in the world to more accurately identify possible riches below — before the costs of drilling or mining are incurred.

From buyers to producers

To create detailed structural-tectonic maps of Israel and the surrounding areas, Prof. Eppelbaum and Dr. Katz carried out an integrated survey using a variety of geophysical tools, including advanced analysis of magnetic, gravity, and temperature fields; utilization of seismic, magnetotelluric, and satellite imaging; and numerous well sections and outcropping studies. All of these results were integrated with plate tectonics reconstructions.

Perhaps the most valuable results of their study, the researchers say, are a series of prospective maps which identify specific areas where geological-geophysical teams are most likely to be successful in the search for natural gas and oil. Such information is not only of critical economic importance to Israel, but will also diversify oil and gas options for consumers worldwide.

Just off the shore of Haifa, a northern city along Israel's coastline, there is believed to be a five hundred billion cubic meter area of gas reserve, Prof. Eppelbaum says. The survey indicates that a few tens of kilometers away, there may be another reserve that would significantly increase the current estimated amount of gas, he notes.

His predictions for additional oil reserves in deep water zones increase the estimated total of gas reserves by 200-300%. "Israel could have a future as a gas country — one that can produce oil and gas and sell it to the rest of the world," Prof. Eppelbaum predicts.

A well-rounded approach

Prof. Eppelbaum says that the research was inspired by Prof. Zvi Ben-Avraham of the Department of Geophysics and Planetary Sciences, who was the first to apply the theory of plate tectonics to Israel and the Eastern Mediterranean. His findings provide a deeper understanding of the geophysical conditions in the region.

Warning that many researchers specialize too narrowly in a specific field or method, Prof. Eppelbaum stresses that the interdisciplinary approach of the Tel Aviv University team had a direct impact on the success of the study. An integrated approach puts critical information firmly in the grasp of today’s scientists — and those "prospecting" for a brighter tomorrow.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>