Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Geophysicist's Guide to Striking It Rich

01.09.2011
TAU researchers develop integrated method for oil and gas survey

Prospecting — the search for valuable reserves such as gold, diamond and natural gas — isn't just a matter of luck. It's about knowing where to look. Now researchers at Tel Aviv University have modernized the hit-or-miss search with cutting-edge technology that scans the earth for signs of lucrative resources that could lurk beneath our feet.

Combining a number of surveying techniques for the first time, Prof. Lev Eppelbaum of TAU's Department of Geophysics and Planetary Sciences at the Raymond and Beverly Sackler Faculty of Exact Sciences and Dr. Youri Katz of TAU's Department of Zoology at the George S. Wise Faculty of Life Sciences have carried out a more accurate and in-depth land survey of Israel and the surrounding Mediterranean area than ever before. Their findings pinpoint the most likely places to find reservoirs of natural gas and oil.

Fifteen years in the making, their technique, which recently appeared in the journal Positioning, can be applied to any region in the world to more accurately identify possible riches below — before the costs of drilling or mining are incurred.

From buyers to producers

To create detailed structural-tectonic maps of Israel and the surrounding areas, Prof. Eppelbaum and Dr. Katz carried out an integrated survey using a variety of geophysical tools, including advanced analysis of magnetic, gravity, and temperature fields; utilization of seismic, magnetotelluric, and satellite imaging; and numerous well sections and outcropping studies. All of these results were integrated with plate tectonics reconstructions.

Perhaps the most valuable results of their study, the researchers say, are a series of prospective maps which identify specific areas where geological-geophysical teams are most likely to be successful in the search for natural gas and oil. Such information is not only of critical economic importance to Israel, but will also diversify oil and gas options for consumers worldwide.

Just off the shore of Haifa, a northern city along Israel's coastline, there is believed to be a five hundred billion cubic meter area of gas reserve, Prof. Eppelbaum says. The survey indicates that a few tens of kilometers away, there may be another reserve that would significantly increase the current estimated amount of gas, he notes.

His predictions for additional oil reserves in deep water zones increase the estimated total of gas reserves by 200-300%. "Israel could have a future as a gas country — one that can produce oil and gas and sell it to the rest of the world," Prof. Eppelbaum predicts.

A well-rounded approach

Prof. Eppelbaum says that the research was inspired by Prof. Zvi Ben-Avraham of the Department of Geophysics and Planetary Sciences, who was the first to apply the theory of plate tectonics to Israel and the Eastern Mediterranean. His findings provide a deeper understanding of the geophysical conditions in the region.

Warning that many researchers specialize too narrowly in a specific field or method, Prof. Eppelbaum stresses that the interdisciplinary approach of the Tel Aviv University team had a direct impact on the success of the study. An integrated approach puts critical information firmly in the grasp of today’s scientists — and those "prospecting" for a brighter tomorrow.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>