Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Geology study raises questions about long-held theories of human evolution

What came first: the bipedal human ancestor or the grassland encroaching on the forest?

A new analysis of the past 12 million years' of vegetation change in the cradle of humanity is challenging long-held beliefs about the world in which our ancestors took shape – and, by extension, the impact it had on them.

The research combines sediment core studies of the waxy molecules from plant leaves with pollen analysis, yielding data of unprecedented scope and detail on what types of vegetation dominated the landscape surrounding the African Rift Valley (including present-day Kenya, Somalia and Ethiopia), where early hominin fossils trace the history of human evolution.

"It is the combination of evidence both molecular and pollen evidence that allows us to say just how long we've seen Serengeti-type open grasslands," said Sarah J. Feakins, assistant professor of Earth sciences at the USC Dornsife College of Letters, Arts and Sciences and lead author of the study, which was published online in Geology on Jan. 17.

Feakins worked with USC graduate student Hannah M. Liddy, USC undergraduate student Alexa Sieracki, Naomi E. Levin of Johns Hopkins University, Timothy I. Eglinton of the Eidgenössische Technische Hochschule and Raymonde Bonnefille of the Université d'Aix-Marseille.

The role that the environment played in the evolution of hominins—the tribe of human and ape ancestors whose family tree split from the ancestors of chimpanzees and bonobos about 6 million years ago—has been the subject of a century-long debate.

Among other things, one theory dating back to 1925 posits that early human ancestors developed bipedalism as a response to savannas encroaching on shrinking forests in northeast Africa. With fewer trees to swing from, human ancestors began walking to get around.

While the shift to bipedalism appears to have occurred somewhere between 6 and 4 million years ago, Feakins' study finds that thick rainforests had already disappeared by that point—replaced by grasslands and seasonally dry forests some time before 12 million years ago.

In addition, the tropical C4-type grasses and shrubs of the modern African savannah began to dominate the landscape earlier than thought, replacing C3-type grasses that were better suited to a wetter environment. (The classification of C4 versus C3 refers to the manner of photosynthesis each type of plant utilizes.)

While earlier studies on vegetation change through this period relied on the analysis of individual sites throughout the Rift Valley—offering narrow snapshots—Feakins took a look at the whole picture by using a sediment core taken in the Gulf of Aden, where winds funnel and deposit sediment from the entire region. She then cross-referenced her findings with Levin who compiled data from ancient soil samples collected throughout eastern Africa.

"The combination of marine and terrestrial data enable us to link the environmental record at specific fossil sites to regional ecological and climate change," Levin said.

In addition to informing scientists about the environment that our ancestors took shape in, Feakins' study provides insights into the landscape that herbivores (horses, hippos and antelopes) grazed, as well as how plants across the landscape reacted to periods of global and regional environmental change.

"The types of grasses appear to be sensitive to global carbon dioxide levels," said Liddy, who is currently working to refine the data pertaining to the Pliocene, to provide an even clearer picture of a period that experienced similar atmospheric carbon dioxide levels to present day. "There might be lessons in here for the future viability of our C4-grain crops," says Feakins.

Funding for this research was provided by the U.S. National Science Foundation HOMINID Grant 0218511 and from USC.

Robert Perkins | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>