Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists from Münster have found rock material from the Earth's proto-crust

25.06.2009
In eastern India a team of scientists from the University of Münster has discovered rocks of a primeval material dating back to the time of the Earth's formation.

The material was formed around four and a half to four billion years ago - in the Earth's so-called Hadean Eon. This is only the second find of its kind in the world, and it shows that certain areas in the upper sections of the Earth's crust can stay untouched for billions of years, thereby storing information from the Earth's earliest years. The researchers have published their results in the latest issue of the prestigious magazine "Nature".

In the earliest period of its history - the Hadean Eon - the Earth was surrounded by an ocean of molten rock which slowly solidified. The scientists from the Institute of Mineralogy at WWU - Dr. Dewashish Upadhyay, Prof. Erik Scherer and Prof. Klaus Mezger - have demonstrated with their find that material from the Earth's proto-crust is still traceable in today's crust, even though this is in constant movement and rock material of varying ages has, in the course of time, been mixed in.

The only other find of this kind was made around a year ago in Canada and made the headlines at the time. "Every find that provides insights into the time the Earth was formed is virgin territory," says Prof. Mezger. This explains why this second find is so significant.

The magmatic rocks come from the State of Orissa in India. They were formed from material that came into being over four billion years ago. About 1.5 billion years ago this melted and formed the new rocks in the upper sections of the Earth's crust at a depth of more than 40 kilometres. As a result of movements in the Earth's crust and weathering processes the rocks finally reached the Earth's surface, which is where they were found by the team of Münster researchers.

"As our Earth is a very active planet, geologically speaking," says Prof. Mezger, "the rocks are constantly worked on, for example through weathering or melting. This means that the rock material to be found today on the Earth's surface is very old. The minerals making up these rocks are, however, much younger. It's a bit like baking a cake: you have the flour before you have the cake." After this second find of rocks from primeval material the scientists now suspect that there is yet more of this material from the Hadean Eon on the Earth's surface - only no one has yet discovered it.

An additional factor is that any analysis of the rock samples is very elaborate. The scientists found proof of the enormous age of the material providing the basis for the much younger magmatic rocks by examining the abundance of a certain isotope of the element neodymium.

In the case of such old rock material this abundance differs from the known mean value for the Earth. "In future," says Prof. Mezger, "it will be very interesting to pinpoint such old areas in the Earth's crust and take samples there. This would give us a better understanding of the history of the Earth's development in its formative years."

References: Upadhyay D., Scherer E. and Mezger K. (2009): 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459, 1118-1121 | doi:10.1038

Dr. Christina Heimken | idw
Further information:
http://www.nature.com/nature/journal/v459/n7250/full/nature08089.html
http://www.uni-muenster.de/Mineralogie/personen/mezger.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>