Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists from Münster have found rock material from the Earth's proto-crust

25.06.2009
In eastern India a team of scientists from the University of Münster has discovered rocks of a primeval material dating back to the time of the Earth's formation.

The material was formed around four and a half to four billion years ago - in the Earth's so-called Hadean Eon. This is only the second find of its kind in the world, and it shows that certain areas in the upper sections of the Earth's crust can stay untouched for billions of years, thereby storing information from the Earth's earliest years. The researchers have published their results in the latest issue of the prestigious magazine "Nature".

In the earliest period of its history - the Hadean Eon - the Earth was surrounded by an ocean of molten rock which slowly solidified. The scientists from the Institute of Mineralogy at WWU - Dr. Dewashish Upadhyay, Prof. Erik Scherer and Prof. Klaus Mezger - have demonstrated with their find that material from the Earth's proto-crust is still traceable in today's crust, even though this is in constant movement and rock material of varying ages has, in the course of time, been mixed in.

The only other find of this kind was made around a year ago in Canada and made the headlines at the time. "Every find that provides insights into the time the Earth was formed is virgin territory," says Prof. Mezger. This explains why this second find is so significant.

The magmatic rocks come from the State of Orissa in India. They were formed from material that came into being over four billion years ago. About 1.5 billion years ago this melted and formed the new rocks in the upper sections of the Earth's crust at a depth of more than 40 kilometres. As a result of movements in the Earth's crust and weathering processes the rocks finally reached the Earth's surface, which is where they were found by the team of Münster researchers.

"As our Earth is a very active planet, geologically speaking," says Prof. Mezger, "the rocks are constantly worked on, for example through weathering or melting. This means that the rock material to be found today on the Earth's surface is very old. The minerals making up these rocks are, however, much younger. It's a bit like baking a cake: you have the flour before you have the cake." After this second find of rocks from primeval material the scientists now suspect that there is yet more of this material from the Hadean Eon on the Earth's surface - only no one has yet discovered it.

An additional factor is that any analysis of the rock samples is very elaborate. The scientists found proof of the enormous age of the material providing the basis for the much younger magmatic rocks by examining the abundance of a certain isotope of the element neodymium.

In the case of such old rock material this abundance differs from the known mean value for the Earth. "In future," says Prof. Mezger, "it will be very interesting to pinpoint such old areas in the Earth's crust and take samples there. This would give us a better understanding of the history of the Earth's development in its formative years."

References: Upadhyay D., Scherer E. and Mezger K. (2009): 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459, 1118-1121 | doi:10.1038

Dr. Christina Heimken | idw
Further information:
http://www.nature.com/nature/journal/v459/n7250/full/nature08089.html
http://www.uni-muenster.de/Mineralogie/personen/mezger.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>