Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Gain New Insight on How the West Was Formed

28.04.2011
Researchers at four institutions, using data gathered from the USArray seismic observatory, have seen more than 200 miles below the surface, capturing evidence on how the Colorado Plateau, including the Grand Canyon, formed and continues to change even today.

Reporting in the April 28 issue of the journal Nature, the eight-member team reports that uplift occurred as bottom portions of the lithosphere -- the upper layer of the Earth -- deteriorated, peeled and collapsed into magnetic, liquid-rich material, allowing the thick, underlying layer of fragile rock -- the asthenosphere -- to ascend and push up remaining surface material.

The images they created document the process of delamination. They also make a case for how much of the western half of the United States and, perhaps, many similar areas around the globe have formed, said co-author Eugene D. Humphreys, professor of geological sciences at the University of Oregon. The process is ongoing, he added, with the western half of the Grand Canyon still rising ever so slowly on the geological clock.

"This is the first time this process has actually been imaged, and it gives us insight into how tectonic plates can disintegrate and give surface uplift," Humphreys said.

UO doctoral student Brandon M. Schmandt applied UO-developed tomography techniques, similar to those used in CAT scans, with USArray data collected by Rice University geologists, including lead author Alan Levander. Their computation was pulled together using interface imaging techniques developed by Levander.

Researchers, including scientists from the University of Southern California and the University of New Mexico, created depth maps of underground features. They did this by calculating seismic secondary waves (S waves) and primary waves (P waves), which travel differently in response to earthquakes anywhere in the world. These waves were monitored at the USArray stations, which were inserted into the ground throughout the west in 2004.

Much of the western United States rose upward in the absence of horizontal tectonics in which plates collide, forcing one to descend and the other to rise. The Colorado Plateau covers much of an area known as the Four Corners -- southwestern Colorado, northwestern New Mexico, northeastern Arizona and southeastern Utah.

"Most geologists learned that vertical motions, like mountain building, are the result of horizontal motions such as thrust faulting, such as the Himalayas." Humphreys said. "More recently we are finding that changes in the density distribution beneath an area -- like the base of a relatively dense plate falling off -- can have a strong effect on surface uplift, too. This has been surprising to many, and for the base of a plate -- in this case, the lithosphere, in geology terminology -- falling off in particular, the question is: How does it do that?"

The two alternative theories have centered on a dripping process, or melting of the lithosphere's underside, or the peeling that occurs in delamination. In 2000, geologists argued that the Sierra Nevada mountain range is the result of the latter.

"We had to find a trigger to cause the lithosphere to become dense enough to fall off," Levander said. The partially molten asthenosphere is "hot and somewhat buoyant, and if there's a topographic gradient along the asthenosphere's upper surface, as there is under the Colorado Plateau, the asthenosphere will flow with it and undergo a small amount of decompression melting as it rises."

It melts enough, he said, to infiltrate the lithosphere's base and solidify. "It's at such a depth that it freezes as a dense phase. At some point, it exceeds the density of the asthenosphere underneath and starts to drip." The heat also reduces the viscosity of the mantle lithosphere.

It's possible, Humphreys said, that mountainous areas of southern and northern Africa and western Saudi Arabia resulted from the same process.

Co-authors with Levander, Schmandt and Humphreys were USC geologist Meghan Miller, Rice graduate student Kaijian Liu, Rice geologist Cin-Ty A. Lee, and geologist Karl E. Karlstrom and doctoral student Ryan Scott Crow, both of the University of New Mexico. National Science Foundation EarthScope grants and the Alexander von Humboldt Foundation Research Prize to Levander funded the research.

About the University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contacts: Jim Barlow, director of science and research communications, 541-346-3481, jebarlow@uoregon.edu; and Mike Williams, senior media relations specialist, Rice University, 713-348-6728, mikewilliams@rice.edu

Source: Eugene Humphreys, professor of geological sciences, 541-346-5575, ghump@uoregon.edu

Links:
Humphreys faculty page: http://bit.ly/hWPPr9
UO Geological Sciences: http://pages.uoregon.edu/dogsci/doku.php
Humphreys, high-resolution mug shot: http://bit.ly/hA9rcb
Levander faculty page: http://www.glacier.rice.edu/faculty/levander/index.html
Audio links:
Research Overview: http://comm.uoregon.edu/files/pmr/uploads/images/Rocky_Mountain_Event_Onward.mp3

Layers' Interaction: http://comm.uoregon.edu/files/pmr/uploads/images/The_Interaction.mp3

UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>