Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Gain New Insight on How the West Was Formed

28.04.2011
Researchers at four institutions, using data gathered from the USArray seismic observatory, have seen more than 200 miles below the surface, capturing evidence on how the Colorado Plateau, including the Grand Canyon, formed and continues to change even today.

Reporting in the April 28 issue of the journal Nature, the eight-member team reports that uplift occurred as bottom portions of the lithosphere -- the upper layer of the Earth -- deteriorated, peeled and collapsed into magnetic, liquid-rich material, allowing the thick, underlying layer of fragile rock -- the asthenosphere -- to ascend and push up remaining surface material.

The images they created document the process of delamination. They also make a case for how much of the western half of the United States and, perhaps, many similar areas around the globe have formed, said co-author Eugene D. Humphreys, professor of geological sciences at the University of Oregon. The process is ongoing, he added, with the western half of the Grand Canyon still rising ever so slowly on the geological clock.

"This is the first time this process has actually been imaged, and it gives us insight into how tectonic plates can disintegrate and give surface uplift," Humphreys said.

UO doctoral student Brandon M. Schmandt applied UO-developed tomography techniques, similar to those used in CAT scans, with USArray data collected by Rice University geologists, including lead author Alan Levander. Their computation was pulled together using interface imaging techniques developed by Levander.

Researchers, including scientists from the University of Southern California and the University of New Mexico, created depth maps of underground features. They did this by calculating seismic secondary waves (S waves) and primary waves (P waves), which travel differently in response to earthquakes anywhere in the world. These waves were monitored at the USArray stations, which were inserted into the ground throughout the west in 2004.

Much of the western United States rose upward in the absence of horizontal tectonics in which plates collide, forcing one to descend and the other to rise. The Colorado Plateau covers much of an area known as the Four Corners -- southwestern Colorado, northwestern New Mexico, northeastern Arizona and southeastern Utah.

"Most geologists learned that vertical motions, like mountain building, are the result of horizontal motions such as thrust faulting, such as the Himalayas." Humphreys said. "More recently we are finding that changes in the density distribution beneath an area -- like the base of a relatively dense plate falling off -- can have a strong effect on surface uplift, too. This has been surprising to many, and for the base of a plate -- in this case, the lithosphere, in geology terminology -- falling off in particular, the question is: How does it do that?"

The two alternative theories have centered on a dripping process, or melting of the lithosphere's underside, or the peeling that occurs in delamination. In 2000, geologists argued that the Sierra Nevada mountain range is the result of the latter.

"We had to find a trigger to cause the lithosphere to become dense enough to fall off," Levander said. The partially molten asthenosphere is "hot and somewhat buoyant, and if there's a topographic gradient along the asthenosphere's upper surface, as there is under the Colorado Plateau, the asthenosphere will flow with it and undergo a small amount of decompression melting as it rises."

It melts enough, he said, to infiltrate the lithosphere's base and solidify. "It's at such a depth that it freezes as a dense phase. At some point, it exceeds the density of the asthenosphere underneath and starts to drip." The heat also reduces the viscosity of the mantle lithosphere.

It's possible, Humphreys said, that mountainous areas of southern and northern Africa and western Saudi Arabia resulted from the same process.

Co-authors with Levander, Schmandt and Humphreys were USC geologist Meghan Miller, Rice graduate student Kaijian Liu, Rice geologist Cin-Ty A. Lee, and geologist Karl E. Karlstrom and doctoral student Ryan Scott Crow, both of the University of New Mexico. National Science Foundation EarthScope grants and the Alexander von Humboldt Foundation Research Prize to Levander funded the research.

About the University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contacts: Jim Barlow, director of science and research communications, 541-346-3481, jebarlow@uoregon.edu; and Mike Williams, senior media relations specialist, Rice University, 713-348-6728, mikewilliams@rice.edu

Source: Eugene Humphreys, professor of geological sciences, 541-346-5575, ghump@uoregon.edu

Links:
Humphreys faculty page: http://bit.ly/hWPPr9
UO Geological Sciences: http://pages.uoregon.edu/dogsci/doku.php
Humphreys, high-resolution mug shot: http://bit.ly/hA9rcb
Levander faculty page: http://www.glacier.rice.edu/faculty/levander/index.html
Audio links:
Research Overview: http://comm.uoregon.edu/files/pmr/uploads/images/Rocky_Mountain_Event_Onward.mp3

Layers' Interaction: http://comm.uoregon.edu/files/pmr/uploads/images/The_Interaction.mp3

UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>