Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Explore Clues to Earth's Formation in Diamonds

08.11.2011
When jewelers inspect diamonds, they look for cut, clarity, color and carat.

When University of Tennessee, Knoxville, geologists Larry Taylor and Yang Liu inspect diamonds, they look for minerals, inclusions jewelers hate, but whose presence could be clues for how parts of earth formed.

Taylor, distinguished professor of earth and planetary sciences, and Liu, research assistant professor, have been awarded $380,000 by the National Science Foundation. The UT geologists will partner with researchers from the Russian Academy of Sciences to study diamond deposits in northern Siberia.

Diamonds in that region are veritable time capsules giving researchers a window into how the continent of North Asia formed.

"These diamonds are carrying information that goes back 3.5 billion years," said Yang. "It helps us piece together how the deep mantle beneath the Asian continent formed and how it evolved."

These diamond deposits are some of largest in the world. They are also some of the most well-preserved, thanks to the cold climate, which protects against weathering by encasing the diamonds in permafrost. Also, Siberia contains thousands of unique volcanoes, called kimberlites, that carry diamonds to the surface from hundreds of miles deep within the earth, unlike 'normal' volcanoes which carry them from a few miles deep.

"The diamonds are brought up through a conduit called a pipe by this strange volcanic magma called a kimberlite," Taylor said. "These kimberlites are the sources of the major diamonds of the world and are the carriers of these prizes from the mantle, where they have formed in high-pressure and high-temperature environments."

The researchers' goal is to determine how Asia's craton—the part of a continent that is stable and forms the central mass of the continent—formed and built upon itself over billions of years. By examining the chemical isotopes of the minerals inside the diamonds, the researchers are able to date the minerals and diamonds and trace their evolutionary history.

"In order to obtain the important chemical information, we polish the diamonds and expose the mineral inclusions," Yang said. "There are no natural materials harder than diamonds, so they are very difficult to polish. We are the only group in the United States that polishes diamonds for scientific purposes."

Through this project, the scientists have access to samples from across the Siberian craton that will enable them to reconstruct the complete life of the craton's early formation, which eventually led to the consolidation of the Asian continent.

The three-year collaboration between UT and the Russian Academy of Sciences was established with a formal agreement for an exchange of scholars. The agreement was signed by Taylor and academician Nikolai Pokhilenko in Novosibirsk, Siberia, this August.

Whitney Heins (865-974-5460, wheins@utk.edu)
Larry Taylor (865-974-6013, lataylor@utk.edu)

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>