Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Explore Clues to Earth's Formation in Diamonds

08.11.2011
When jewelers inspect diamonds, they look for cut, clarity, color and carat.

When University of Tennessee, Knoxville, geologists Larry Taylor and Yang Liu inspect diamonds, they look for minerals, inclusions jewelers hate, but whose presence could be clues for how parts of earth formed.

Taylor, distinguished professor of earth and planetary sciences, and Liu, research assistant professor, have been awarded $380,000 by the National Science Foundation. The UT geologists will partner with researchers from the Russian Academy of Sciences to study diamond deposits in northern Siberia.

Diamonds in that region are veritable time capsules giving researchers a window into how the continent of North Asia formed.

"These diamonds are carrying information that goes back 3.5 billion years," said Yang. "It helps us piece together how the deep mantle beneath the Asian continent formed and how it evolved."

These diamond deposits are some of largest in the world. They are also some of the most well-preserved, thanks to the cold climate, which protects against weathering by encasing the diamonds in permafrost. Also, Siberia contains thousands of unique volcanoes, called kimberlites, that carry diamonds to the surface from hundreds of miles deep within the earth, unlike 'normal' volcanoes which carry them from a few miles deep.

"The diamonds are brought up through a conduit called a pipe by this strange volcanic magma called a kimberlite," Taylor said. "These kimberlites are the sources of the major diamonds of the world and are the carriers of these prizes from the mantle, where they have formed in high-pressure and high-temperature environments."

The researchers' goal is to determine how Asia's craton—the part of a continent that is stable and forms the central mass of the continent—formed and built upon itself over billions of years. By examining the chemical isotopes of the minerals inside the diamonds, the researchers are able to date the minerals and diamonds and trace their evolutionary history.

"In order to obtain the important chemical information, we polish the diamonds and expose the mineral inclusions," Yang said. "There are no natural materials harder than diamonds, so they are very difficult to polish. We are the only group in the United States that polishes diamonds for scientific purposes."

Through this project, the scientists have access to samples from across the Siberian craton that will enable them to reconstruct the complete life of the craton's early formation, which eventually led to the consolidation of the Asian continent.

The three-year collaboration between UT and the Russian Academy of Sciences was established with a formal agreement for an exchange of scholars. The agreement was signed by Taylor and academician Nikolai Pokhilenko in Novosibirsk, Siberia, this August.

Whitney Heins (865-974-5460, wheins@utk.edu)
Larry Taylor (865-974-6013, lataylor@utk.edu)

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>