Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists discover new class of landform -- on Mars

22.03.2012
An odd, previously unseen landform could provide a window into the geological history of Mars, according to new research by University of Washington geologists.

They call the structures periodic bedrock ridges (and they use the abbreviation PBRs to evoke a favorite brand of beer). The ridges look like sand dunes but, rather than being made from material piled up by the wind, the scientists say the ridges actually form from wind erosion of bedrock.


Images from the High Resolution Imaging Science Experiment on NASA's Mars Reconnaissance Orbiter show exposed rock strata in periodic bedrock ridges on the floor of the West Candor Chasma on Mars. Credit: NASA

"These bedforms look for all the world like sand dunes but they are carved into hard rock by wind," said David Montgomery, a UW professor of Earth and space sciences. It is something there are not many analogs for on Earth."

He believes the ridges, while still bedrock, are composed of a softer, more erodible material than typical bedrock and were formed by an unusual form of wind erosion that occurs perpendicular to the prevailing wind rather than in the same direction.

He contrasts the ridges with another bedrock form called a yardang, which has been carved over time by headwinds. A yardang has a wide, blunt leading edge in the face of the wind, and its sides are tapered so that it resembles a teardrop.

In the case of periodic bedrock ridges, Montgomery believes high surface winds on Mars are deflected into the air by a land formation, and they erode the bedrock in the area where they settle back to the surface.

Spacing between ridges depends on how long it takes for the winds to come back to the surface, and that is determined by the strength of the wind, the size of the deflection and the density of the atmosphere, he said.

The discovery is important because if the ridges were actually created by wind depositing material into dunes, "you're not going to have information from any prior history of the material that is exposed at the surface," he said.

"But if it's cut into instead, and you're looking at the residual of a rock that has been eroded away, you can still get the history of what was happening long ago from that spot," Montgomery said.

"You could actually go back and look at some earlier eras in Martian history, and the wind would have done us the favor of exposing the layers that would have that history within it," he said. "There are some areas of the Martian surface, potentially large areas, that up until now we've thought you couldn't really get very far back into Mars history geologically."

Montgomery is the lead author of a paper documenting the discovery published online March 9 in the Journal of Geophysical Research, a journal of the American Geophysical Union. Coauthors are Joshua Bandfield, a UW research assistant professor of Earth and space sciences, and Scott Becker, who did the work as an undergraduate in Earth and space sciences and has received his degree. The work was funded in part by NASA.

There could be landforms on Earth that are somewhat similar to periodic bedrock ridges, Montgomery said, but to date there's nothing exactly like it, largely because there are not many bedrock landscapes on Earth in which wind is the main erosion agent.

"There are very few places … where you have bedrock exposed at the surface where there isn't also water that is carving valleys, that's shaping the topography," he said. "Mars is a different planet, obviously, and the biggest difference is the lack of fluvial action, the lack of water working on the surface."

For more information, contact Montgomery at 206-685-2560 or dave@ess.washington.edu.

The paper is available at http://www.agu.org/pubs/crossref/2012/2011JE003970.shtml

Vince Stricherz | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>