Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist: Fla. ridges' mystery marine fossils tied to rising land, not seas

01.06.2010
Sea level has not been as high as the distinctive ridges that run down the length of Florida for millions of years. Yet recently deposited marine fossils abound in the ridges' sands.

Now, a University of Florida geologist may have helped crack that mystery.

In a paper appearing June 1 in the June edition of the journal Geology, Peter Adams, a UF assistant professor of geological sciences, says his computer models of Florida's changing land mass support this theory: The land that forms the sandy Trail Ridge running north to south from North Florida through South Georgia, as well as lesser-known ridges, was undersea at the time the fossils were deposited -- but rose over time, reaching elevations that exceeded later sea level high stands.

"If you look at the best records, there's no evidence that global sea level has come close to occupying the elevation of these fossils since the time of their emplacement," Adams said, referring to Trail Ridge's elevation today, nearly 230 feet above modern sea level. "The only thing that explains this conundrum is that Trail Ridge was underwater, but later rose to an elevation higher than subsequent sea levels."

At the heart of the phenomenon are Florida's unique weather patterns and geology, Adams said.

The state's abundant rain contains a small amount of carbon dioxide, which forms carbonic acid in lake and river water. This slightly acidic water slowly eats away at Florida's limestone bedrock, forming the karst topography for which Florida is so well known, replete with pockmarks, underground springs and subterranean caverns. The surface water washes the dissolved limestone out to sea, over time significantly lightening the portion of the Earth's crust that covers Florida.

A mass of slow-moving mantle rock resides 6 to 18 miles below the crust. As the Florida land mass lightens, this mantle pushes upward to equilibrate the load, forcing Florida skyward, Adams said. The process is known as isostatic rebound, or isostatic uplift.

"It's just like what happens when you get out of bed in the morning. The mattress springs raise the surface of the bed back up," Adams said, adding that the uplift is similar to what takes place when glaciers retreat, with Maine and Norway, for example, also gaining elevation.

Glaciers melt off the land surface to drive isostatic uplift. But in Florida, varying rainfall rates during different periods have slowed or quickened the karstification just below the land. This has in turn slowed or quickened the mantle's push up from below. Additionally, sea level high stands do not always return to the same elevation, which creates a complex history of which beach ridges are preserved and which aren't, Adams said.

For instance, during periods when sea level rose quickly, some pre-existing ridges were overtaken and wiped out. During other periods, however, when sea level rose slowly or did not reach a certain ridge's elevation, a beach ridge was preserved. In effect, Trail Ridge, Lake Wales Ridge and other lesser-known ridges are the remains of isostatically uplifted land that was kept out of harm's way, Adams said. The ridges carry with them the marine fossils that are the evidence of their lowly early beginnings.

Today, the land surface of Florida is rising at a rate of about one-twentieth of a millimeter annually, far more slowly than sea level rise estimated at approximately 3 millimeters annually. Adams noted that Florida's rise is not nearly rapid enough to counteract sea level rise – and that society should be mindful that low-lying coastal areas are threatened.

Neil Opdyke, a UF professor emeritus and a co-author of the recent paper, first proposed the uplift process in a 1984 paper. Adams tested it using computer models that matched known information about sea levels dating back 1.6 million years with historic rainfall patterns, karstification rates and mantle uplift. The models concluded that Trail Ridge is approximately 1.4 million years old -- and has been preserved because of uplift and the fact that sea levels have not reached the ridge's elevation since its formation. In addition, Florida's one-twentieth of a millimeter rise is twice as fast as previously thought.

"The neat thing about this paper is, it combines many different systems that people work on. There are people who work on uplift, people who work on erosion of karst, people who work on precipitation and paleoclimate," Adams said. "And I knew just enough about all these things to be dangerous. So I said. 'Let's take what we know from the literature and put it together in a simple mathematical model to see how the whole system responds.'"

Peter Adams | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>