Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist: Fla. ridges' mystery marine fossils tied to rising land, not seas

01.06.2010
Sea level has not been as high as the distinctive ridges that run down the length of Florida for millions of years. Yet recently deposited marine fossils abound in the ridges' sands.

Now, a University of Florida geologist may have helped crack that mystery.

In a paper appearing June 1 in the June edition of the journal Geology, Peter Adams, a UF assistant professor of geological sciences, says his computer models of Florida's changing land mass support this theory: The land that forms the sandy Trail Ridge running north to south from North Florida through South Georgia, as well as lesser-known ridges, was undersea at the time the fossils were deposited -- but rose over time, reaching elevations that exceeded later sea level high stands.

"If you look at the best records, there's no evidence that global sea level has come close to occupying the elevation of these fossils since the time of their emplacement," Adams said, referring to Trail Ridge's elevation today, nearly 230 feet above modern sea level. "The only thing that explains this conundrum is that Trail Ridge was underwater, but later rose to an elevation higher than subsequent sea levels."

At the heart of the phenomenon are Florida's unique weather patterns and geology, Adams said.

The state's abundant rain contains a small amount of carbon dioxide, which forms carbonic acid in lake and river water. This slightly acidic water slowly eats away at Florida's limestone bedrock, forming the karst topography for which Florida is so well known, replete with pockmarks, underground springs and subterranean caverns. The surface water washes the dissolved limestone out to sea, over time significantly lightening the portion of the Earth's crust that covers Florida.

A mass of slow-moving mantle rock resides 6 to 18 miles below the crust. As the Florida land mass lightens, this mantle pushes upward to equilibrate the load, forcing Florida skyward, Adams said. The process is known as isostatic rebound, or isostatic uplift.

"It's just like what happens when you get out of bed in the morning. The mattress springs raise the surface of the bed back up," Adams said, adding that the uplift is similar to what takes place when glaciers retreat, with Maine and Norway, for example, also gaining elevation.

Glaciers melt off the land surface to drive isostatic uplift. But in Florida, varying rainfall rates during different periods have slowed or quickened the karstification just below the land. This has in turn slowed or quickened the mantle's push up from below. Additionally, sea level high stands do not always return to the same elevation, which creates a complex history of which beach ridges are preserved and which aren't, Adams said.

For instance, during periods when sea level rose quickly, some pre-existing ridges were overtaken and wiped out. During other periods, however, when sea level rose slowly or did not reach a certain ridge's elevation, a beach ridge was preserved. In effect, Trail Ridge, Lake Wales Ridge and other lesser-known ridges are the remains of isostatically uplifted land that was kept out of harm's way, Adams said. The ridges carry with them the marine fossils that are the evidence of their lowly early beginnings.

Today, the land surface of Florida is rising at a rate of about one-twentieth of a millimeter annually, far more slowly than sea level rise estimated at approximately 3 millimeters annually. Adams noted that Florida's rise is not nearly rapid enough to counteract sea level rise – and that society should be mindful that low-lying coastal areas are threatened.

Neil Opdyke, a UF professor emeritus and a co-author of the recent paper, first proposed the uplift process in a 1984 paper. Adams tested it using computer models that matched known information about sea levels dating back 1.6 million years with historic rainfall patterns, karstification rates and mantle uplift. The models concluded that Trail Ridge is approximately 1.4 million years old -- and has been preserved because of uplift and the fact that sea levels have not reached the ridge's elevation since its formation. In addition, Florida's one-twentieth of a millimeter rise is twice as fast as previously thought.

"The neat thing about this paper is, it combines many different systems that people work on. There are people who work on uplift, people who work on erosion of karst, people who work on precipitation and paleoclimate," Adams said. "And I knew just enough about all these things to be dangerous. So I said. 'Let's take what we know from the literature and put it together in a simple mathematical model to see how the whole system responds.'"

Peter Adams | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>