Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologic mapping of asteroid Vesta reveals history of large impacts

18.11.2014

A team of 14 scientists led by David Williams of Arizona State University's School of Earth and Space Exploration has completed the first global geologic and tectonic map of the asteroid Vesta. The work reveals that Vesta's history has been dominated by impacts from large meteorites.

The mapping was carried out using images from NASA's Dawn spacecraft, which orbited Vesta between June 2011 and September 2012. The images let scientists create high-resolution geological maps, revealing the variety of Vesta’s surface features in unprecedented detail.


In this detail from the new geological map of Vesta, brown colors represent the oldest, most heavily cratered surface. Purple colors and light blue represent terrains modified by the Veneneia and Rheasilvia impacts, respectively. Light purples and dark blue colors below the equator represent the interior of the Rheasilvia and Veneneia basins. Greens and yellows represent relatively young landslides or other downhill movement and crater impact materials, respectively. Tectonic features such as faults are shown by black lines.

Photo by: NASA/JPL-Caltech/Arizona State University


The global geological map unifies 15 individual quadrangle maps. It uses a Mollweide projection centered on 180 degrees longitude using the Dawn Claudia coordinate system.

Photo by: NASA/JPL-Caltech/Arizona State University

"The geologic mapping campaign at Vesta took about two and a half years to complete," says Williams. "The resulting maps enabled us to construct a geologic time scale of Vesta for comparison to other planets and moons."

The geologic map and timescale appear in a paper by Williams and others in the December 2014 issue of the journal Icarus. The issue also has 10 other papers reporting on Dawn's investigation of Vesta. In addition to Williams, the mapping effort was also led by R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona, and W. Brent Garry of NASA's Goddard Spaceflight Center, Greenbelt, Maryland.

The mappers found that Vesta’s geologic time scale has been shaped by a sequence of large impact events. The biggest of these were the impacts that blasted the large Veneneia and Rheasilvia craters early in Vesta's history, and the Marcia crater late in its history.

In mapping an extraterrestrial object, scientists begin by studying its surface features to develop a relative chronology of events. They look to see which feature interrupts or disturbs other features, thereby placing them in a relative time sequence. Then, crater by crater, fracture by fracture, scientists build up a chronology of events.

But how long ago did specific events happen? An age in years is quite difficult to determine because the samples scientists have from Vesta – a family of basaltic meteorites called HEDs, for howardite-eucrite-diogenite – do not show a clear formation age (as dated by laboratory methods) that can be linked to specific features on the asteroid.

"So figuring out an actual date in years is a step-by-step-by-step process," explains Williams. "We work with rock samples from the moon, mostly from Apollo missions decades ago. These give actual dates for large lunar impacts." The tricky part, he says, lies in creating a model that links the lunar impact time scale to the rest of the solar system.

In the case of Vesta, scientists have developed two different models to estimate surface ages. One is based on the lunar impact rate, the other on the frequency of asteroid impacts. Thus scientists can use two approaches with crater statistics to date Vesta's surface, but these yield two different age ranges.

Applying the models to Vesta, Williams' team concluded that the oldest surviving crust on Vesta predates the Veneneia impact, which has an age of 2.1 billion years (asteroid system) or 3.7 billion years (lunar system). The Rheasilvia impact likely has an age of around 1 billion years (asteroids) or 3.5 billion years (lunar).

"Vesta's last big event, the Marcia impact, has an age that's still uncertain," says Williams. "But our current best estimates suggest an age between roughly 120 and 390 million years." The difference, he explains, comes from which cratering model is used.

The geologic mapping relied on images taken by the framing camera provided by the Max Planck Institute for Solar System Research of the German Max Planck Society and the German Aerospace Center (DLR). This camera takes panchromatic images and seven bands of color filtered images. Overlapping images provide stereoscopic views that create topographic models of the surface to help the geologic interpretation.

“Geological mapping was crucial for resolving Vesta’s geologic history, as well as providing geologic context to understand compositional information from Dawn's Visible and Infrared (VIR) spectrometer and Gamma Ray and Neutron Detector (GRaND),” says Carol Raymond, Dawn’s deputy principal investigator.

The objective of NASA's Dawn mission, launched in 2007, is to characterize the two most massive objects in the main asteroid belt between Mars and Jupiter. Vesta was thought to be the source of a unique set of basaltic meteorites (the HEDs), and Dawn confirmed the Vesta-HED connection. The Dawn spacecraft is currently on its way to the dwarf planet Ceres, the largest object in the asteroid belt. The spacecraft will arrive at Ceres in March 2015. The Dawn mission is managed by the NASA Jet Propulsion Laboratory in Pasadena, California.

The School of Earth and Space Exploration is an academic unit of ASU's College of Liberal Arts and Sciences.


Robert Burnham, robert.burnham@asu.edu

(480) 458-8207

Mars Space Flight Facility

Robert Burnham | Arizona State University
Further information:
https://asunews.asu.edu/20141117-vesta-map

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>