Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologic map of Jupiter's moon Io details an otherworldly volcanic surface

20.03.2012
ASU-led team produces first complete geologic map of Io

More than 400 years after Galileo's discovery of Io, the innermost of Jupiter's largest moons, a team of scientists led by Arizona State University (ASU) has produced the first complete global geologic map of the Jovian satellite. The map, published by the U. S. Geological Survey, depicts the characteristics and relative ages of some of the most geologically unique and active volcanoes and lava flows ever documented in the Solar System.


A team led by ASU's David Williams produces the first complete geologic map of Io. This image is a true color image of Io's antijovian hemisphere. Credit: USGS/ASU

Following its discovery by Galileo in January 1610, Io has been the focus of repeated telescopic and satellite scientific observation. These studies have shown that the orbital and gravitational relationships between Io, its sister moons Europa and Ganymede, and Jupiter cause massive, rapid flexing of its rocky crust. These tidal flexures generate tremendous heat within Io's interior, which is released through the many surface volcanoes observed.

"One of the reasons for making this map was to create a tool for continuing scientific studies of Io, and a tool for target planning of Io observations on future missions to the Jupiter system," says David Williams, a faculty research associate in the School of Earth and Space Exploration at ASU, who led the six-year research project to produce the geologic map.

The highly detailed, colorful map reveals a number of volcanic features, including: paterae (caldera-like depressions), lava flow fields, tholi (volcanic domes), and plume deposits, in various shapes, sizes and colors, as well as high mountains and large expanses of sulfur- and sulfur dioxide-rich plains. The mapping identified 425 paterae, or individual volcanic centers. One feature you will not see on the geologic map is impact craters.

"Io has no impact craters; it is the only object in the Solar System where we have not seen any impact craters, testifying to Io's very active volcanic resurfacing," says Williams.

Io is extremely active, with literally hundreds of volcanic sources on its surface. Interestingly, although Io is so volcanically active, more than 25 times more volcanically active than Earth, most of the long-term surface changes resulting from volcanism are restricted to less than 15 percent of the surface, mostly in the form of changes in lava flow fields or within paterae.

"Our mapping has determined that most of the active hot spots occur in paterae, which cover less than 3 percent of Io's surface. Lava flow fields cover approximately 28 percent of the surface, but contain only 31 percent of hot spots," says Williams. "Understanding the geographical distribution of these features and hot spots, as identified through this map, are enabling better models of Io's interior processes to be developed."

The Io geologic map is unique from other USGS-published planetary geologic maps because surface features were mapped and characterized using four distinct global image mosaics. These image mosaics, produced by the USGS, combine the best images from NASA's Voyager 1 and 2 missions (acquired in 1979) as well as the Galileo orbiter (1995-2003).

Using the mosaics from the USGS, Williams mapped the entire surface of Io into 19 different types of surface material types, and determined their locations and sizes (areas). He then correlated the map information with the locations of all known hot spots (locations of active volcanism) to provide a global picture of the styles of volcanism on Io.

"Because of the non-uniform coverage of Io by multiple Voyager and Galileo flybys, including a variety of lighting conditions, it was absolutely necessary to use the different mosaics to identify specific geologic features, such as separating mountains and paterae from plains, and separating the colored plume deposits from the underlying geologic units," says Williams.

Though the geology history of Io has been studied in detail for several decades, completion of the geologic map establishes a critical framework for integrating and comparing diverse studies.

"Planetary geologic mapping inevitably drives scientific progress," says Ken Herkenhoff, USGS Astrogeology Acting Science Center director. "Mapping the geology of a planetary surface [such as Io] forces scientists to carefully consider hypotheses that address the geologic evolution of an entire planet and test these hypotheses against all available observations."

"Because Io is so active, and continues to be studied by Earth-based telescopes, we are doing something different than producing just the paper geologic map," says Williams. "We are also making an online Io database, to include the geologic map, the USGS mosaics, and all useful Galileo spacecraft observations of Io. This database, when completed later this year, will allow users to track the history of surface changes due to volcanic activity. We also have proposals submitted to NASA to include in our Io database Earth-based telescopic observations and images from the February 2007 NASA New Horizons spacecraft flyby, to create a single online source to study the history of Io volcanism."

The project was funded by the National Aeronautics and Space Administration through its Outer Planets Research and Planetary Geology and Geophysics Programs. Technical and editorial support for map production was provided by the USGS Astrogeology Science Center in Flagstaff, Ariz.

The geologic map can be downloaded from the USGS here: http://pubs.usgs.gov/sim/3168

Nicole Cassis | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht California rising
04.09.2015 | University of California - Santa Barbara

nachricht NASA's Aqua Satellite sees Typhoon Kilo headed west
04.09.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>