Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologic map of Jupiter's moon Io details an otherworldly volcanic surface

20.03.2012
ASU-led team produces first complete geologic map of Io

More than 400 years after Galileo's discovery of Io, the innermost of Jupiter's largest moons, a team of scientists led by Arizona State University (ASU) has produced the first complete global geologic map of the Jovian satellite. The map, published by the U. S. Geological Survey, depicts the characteristics and relative ages of some of the most geologically unique and active volcanoes and lava flows ever documented in the Solar System.


A team led by ASU's David Williams produces the first complete geologic map of Io. This image is a true color image of Io's antijovian hemisphere. Credit: USGS/ASU

Following its discovery by Galileo in January 1610, Io has been the focus of repeated telescopic and satellite scientific observation. These studies have shown that the orbital and gravitational relationships between Io, its sister moons Europa and Ganymede, and Jupiter cause massive, rapid flexing of its rocky crust. These tidal flexures generate tremendous heat within Io's interior, which is released through the many surface volcanoes observed.

"One of the reasons for making this map was to create a tool for continuing scientific studies of Io, and a tool for target planning of Io observations on future missions to the Jupiter system," says David Williams, a faculty research associate in the School of Earth and Space Exploration at ASU, who led the six-year research project to produce the geologic map.

The highly detailed, colorful map reveals a number of volcanic features, including: paterae (caldera-like depressions), lava flow fields, tholi (volcanic domes), and plume deposits, in various shapes, sizes and colors, as well as high mountains and large expanses of sulfur- and sulfur dioxide-rich plains. The mapping identified 425 paterae, or individual volcanic centers. One feature you will not see on the geologic map is impact craters.

"Io has no impact craters; it is the only object in the Solar System where we have not seen any impact craters, testifying to Io's very active volcanic resurfacing," says Williams.

Io is extremely active, with literally hundreds of volcanic sources on its surface. Interestingly, although Io is so volcanically active, more than 25 times more volcanically active than Earth, most of the long-term surface changes resulting from volcanism are restricted to less than 15 percent of the surface, mostly in the form of changes in lava flow fields or within paterae.

"Our mapping has determined that most of the active hot spots occur in paterae, which cover less than 3 percent of Io's surface. Lava flow fields cover approximately 28 percent of the surface, but contain only 31 percent of hot spots," says Williams. "Understanding the geographical distribution of these features and hot spots, as identified through this map, are enabling better models of Io's interior processes to be developed."

The Io geologic map is unique from other USGS-published planetary geologic maps because surface features were mapped and characterized using four distinct global image mosaics. These image mosaics, produced by the USGS, combine the best images from NASA's Voyager 1 and 2 missions (acquired in 1979) as well as the Galileo orbiter (1995-2003).

Using the mosaics from the USGS, Williams mapped the entire surface of Io into 19 different types of surface material types, and determined their locations and sizes (areas). He then correlated the map information with the locations of all known hot spots (locations of active volcanism) to provide a global picture of the styles of volcanism on Io.

"Because of the non-uniform coverage of Io by multiple Voyager and Galileo flybys, including a variety of lighting conditions, it was absolutely necessary to use the different mosaics to identify specific geologic features, such as separating mountains and paterae from plains, and separating the colored plume deposits from the underlying geologic units," says Williams.

Though the geology history of Io has been studied in detail for several decades, completion of the geologic map establishes a critical framework for integrating and comparing diverse studies.

"Planetary geologic mapping inevitably drives scientific progress," says Ken Herkenhoff, USGS Astrogeology Acting Science Center director. "Mapping the geology of a planetary surface [such as Io] forces scientists to carefully consider hypotheses that address the geologic evolution of an entire planet and test these hypotheses against all available observations."

"Because Io is so active, and continues to be studied by Earth-based telescopes, we are doing something different than producing just the paper geologic map," says Williams. "We are also making an online Io database, to include the geologic map, the USGS mosaics, and all useful Galileo spacecraft observations of Io. This database, when completed later this year, will allow users to track the history of surface changes due to volcanic activity. We also have proposals submitted to NASA to include in our Io database Earth-based telescopic observations and images from the February 2007 NASA New Horizons spacecraft flyby, to create a single online source to study the history of Io volcanism."

The project was funded by the National Aeronautics and Space Administration through its Outer Planets Research and Planetary Geology and Geophysics Programs. Technical and editorial support for map production was provided by the USGS Astrogeology Science Center in Flagstaff, Ariz.

The geologic map can be downloaded from the USGS here: http://pubs.usgs.gov/sim/3168

Nicole Cassis | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>