Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geographic analysis offers new insight into coral disease spread

01.08.2011
In the last 30 years, more than 90 percent of the reef-building coral responsible for maintaining major marine habitats and providing a natural barrier against hurricanes in the Caribbean has disappeared because of a disease of unknown origin.

Now a University of Florida geographer and his colleagues applied Geographic Information Systems, known as GIS — as well as software previously used to examine human illness — to show where clusters of diseased coral exist. Their findings, published this month in the journal PLoS One, may help scientists derive better hypotheses to determine what contributes to coral disintegration.

“What you’ll find is that spatial techniques have been used relatively little in the coral research community,” said paper co-author Jason Blackburn, a UF professor of geography and member of UF’s Emerging Pathogens Institute. “With these methods, we gain a better understanding of the disease’s distribution across the reef.”

Microbiologists and toxicologists often run laboratory tests on small samples of Acropora species of coral to determine the factors that contribute to white-band disease, known as WBD. It’s visually identified as a white band moving from the base of the coral up, killing the coral tissue as it goes, leaving only the exposed coral skeleton behind.

Laboratory results spur a range of theories of causation — anything from opportunistic pathogens to specific bacterial infections. Other scientists suggest that WBD is not the result of an outside agent, such as bacteria, but rather a stress response from the coral in reaction to changes in the marine environment, such as ocean pollution and rising ocean temperatures due to climate change.

Yet the cause remains unclear. The goal of this current study was to use GIS and spatial analysis to search for patterns in a WBD outbreak that might point to a mode of transmission or cause, Blackburn said.

“What we wanted to test is how much data scientists should gather to get the full picture of disease,” he said. “What we found was that colony-level sampling, where individual Acropora colonies are counted and checked for disease, can show a far different picture of white-band disease than where only presence/absence of coral and disease are mapped.”

The researchers used data gathered in 2004 from scientists stationed at Buck Island National Monument in the U.S. Virgin Islands. Rather than determining only whether coral was affected by WBD, samplers at the station counted the individual number of healthy and non-healthy coral colonies. University researchers were then able to use this information in the Disease Mapping and Analysis Program, known as DMAP. The free software, designed by the University of Iowa initially to study Sudden-Infant Death Syndrome, was used to create maps of WBD prevalence and to locate areas with significant disease clustering.

“While the focus of our study was on a specific white-band disease outbreak, our methods could be used to determine if there’s a spatial component to just about any type of situation that might be present in an underlying population,” said Jennifer Lentz, a Louisiana State University graduate student who is lead author on the paper. “For example, you could use these same techniques to determine whether people with cancer are clustered in a given geographical area, and if so is there something about those locations that might be contributing to the increased prevalence of cancer.”

The researchers determined that 3 percent of the Acropora coral around Buck Island had WBD. They also found the locations of significant disease clusters, information scientists can then use to narrow where they should take samples for further laboratory tests. This is the first of several studies established by the researchers exploring which types of spatial analysis are the most appropriate for various types of coral data from the Caribbean.

For thousands of years, Acropora was the predominant coral in the Caribbean, but more than three decades of disease have destroyed the species ability to survive, forcing marine life out of their coral habitats, which exposes them to attack by predators.

“When these structures are gone, certain fish species have nowhere to go,” said Lentz. “Whole marine communities start to collapse.”

Writer
Claudia Adrien, c.adrien@epi.ufl.edu
Source
Jason Blackburn, jkblackburn@ufl.edu, 352-273-9374
Source
Jennifer Lentz, jlentz1@lsu.edu, 225-578-6308

Jason Blackburn | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Blackburn GIS PLoS One WBD bacterial infection ocean temperature tropical Caribbean

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>