Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geographic analysis offers new insight into coral disease spread

01.08.2011
In the last 30 years, more than 90 percent of the reef-building coral responsible for maintaining major marine habitats and providing a natural barrier against hurricanes in the Caribbean has disappeared because of a disease of unknown origin.

Now a University of Florida geographer and his colleagues applied Geographic Information Systems, known as GIS — as well as software previously used to examine human illness — to show where clusters of diseased coral exist. Their findings, published this month in the journal PLoS One, may help scientists derive better hypotheses to determine what contributes to coral disintegration.

“What you’ll find is that spatial techniques have been used relatively little in the coral research community,” said paper co-author Jason Blackburn, a UF professor of geography and member of UF’s Emerging Pathogens Institute. “With these methods, we gain a better understanding of the disease’s distribution across the reef.”

Microbiologists and toxicologists often run laboratory tests on small samples of Acropora species of coral to determine the factors that contribute to white-band disease, known as WBD. It’s visually identified as a white band moving from the base of the coral up, killing the coral tissue as it goes, leaving only the exposed coral skeleton behind.

Laboratory results spur a range of theories of causation — anything from opportunistic pathogens to specific bacterial infections. Other scientists suggest that WBD is not the result of an outside agent, such as bacteria, but rather a stress response from the coral in reaction to changes in the marine environment, such as ocean pollution and rising ocean temperatures due to climate change.

Yet the cause remains unclear. The goal of this current study was to use GIS and spatial analysis to search for patterns in a WBD outbreak that might point to a mode of transmission or cause, Blackburn said.

“What we wanted to test is how much data scientists should gather to get the full picture of disease,” he said. “What we found was that colony-level sampling, where individual Acropora colonies are counted and checked for disease, can show a far different picture of white-band disease than where only presence/absence of coral and disease are mapped.”

The researchers used data gathered in 2004 from scientists stationed at Buck Island National Monument in the U.S. Virgin Islands. Rather than determining only whether coral was affected by WBD, samplers at the station counted the individual number of healthy and non-healthy coral colonies. University researchers were then able to use this information in the Disease Mapping and Analysis Program, known as DMAP. The free software, designed by the University of Iowa initially to study Sudden-Infant Death Syndrome, was used to create maps of WBD prevalence and to locate areas with significant disease clustering.

“While the focus of our study was on a specific white-band disease outbreak, our methods could be used to determine if there’s a spatial component to just about any type of situation that might be present in an underlying population,” said Jennifer Lentz, a Louisiana State University graduate student who is lead author on the paper. “For example, you could use these same techniques to determine whether people with cancer are clustered in a given geographical area, and if so is there something about those locations that might be contributing to the increased prevalence of cancer.”

The researchers determined that 3 percent of the Acropora coral around Buck Island had WBD. They also found the locations of significant disease clusters, information scientists can then use to narrow where they should take samples for further laboratory tests. This is the first of several studies established by the researchers exploring which types of spatial analysis are the most appropriate for various types of coral data from the Caribbean.

For thousands of years, Acropora was the predominant coral in the Caribbean, but more than three decades of disease have destroyed the species ability to survive, forcing marine life out of their coral habitats, which exposes them to attack by predators.

“When these structures are gone, certain fish species have nowhere to go,” said Lentz. “Whole marine communities start to collapse.”

Writer
Claudia Adrien, c.adrien@epi.ufl.edu
Source
Jason Blackburn, jkblackburn@ufl.edu, 352-273-9374
Source
Jennifer Lentz, jlentz1@lsu.edu, 225-578-6308

Jason Blackburn | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Blackburn GIS PLoS One WBD bacterial infection ocean temperature tropical Caribbean

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>