Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering and global food supply

23.01.2012
Carbon dioxide emissions from the burning of coal, oil, and gas have been increasing over the past decades, causing the Earth to get hotter and hotter.

There are concerns that a continuation of these trends could have catastrophic effects, including crop failures in the heat-stressed tropics. This has led some to explore drastic ideas for combating global warming, including the idea of trying to counteract it by reflecting sunlight away from the Earth.

However, it has been suggested that reflecting sunlight away from the Earth might itself threaten the food supply of billions of people. New research led by Carnegie's Julia Pongratz examines the potential effects that geoengineering the climate could have on global food production and concludes that sunshade geoengineering would be more likely to improve rather than threaten food security. Their work is published online by Nature Climate Change January 22.

Big volcanoes cool the planet by placing lots of small particles in the stratosphere, but the particles fall out within a year and the planet heats back up. One proposal for cooling the planet is to use high-flying airplanes to constantly replenish a layer of small particles in the stratosphere that would scatter sunlight back to space. But such so-called sunshade geoengineering could have unintended consequences for climate, and especially for precipitation.

Although scientists know that climate change in recent decades has negatively impacted crop yields in many regions, the study by Pongratz and colleagues is the first to examine the potential effect of geoengineering on food security. Pongratz's team, which included Carnegie's Ken Caldeira and Long Cao, as well as Stanford University's David Lobell, used models to assess the impact of sunshade geoengineering on crop yields.

Using two different climate models, they simulated climates with carbon dioxide levels similar to what exists today. A second set of simulations doubled carbon-dioxide levels – levels that could be reached in several decades if current trends in fossil-fuel burning continue unabated. A third set of simulations posited doubled carbon dioxide, but with a layer of sulfate aerosols in the stratosphere deflecting about 2% of incoming sunlight away from the Earth. The simulated climate changes were then applied to crop models that are commonly used to project future yields.

The team found that, in the model, sunshade geoengineering leads to increased crop yields in most regions, both compared with current conditions and with the future projection of doubled carbon dioxide on its own. This is because deflecting sunlight back to space reduces temperatures, but not CO2. "In many regions, future climate change is predicted to put crops under temperature stress, reducing yields. This stress is alleviated by geoengineering," Pongratz said. "At the same time, the beneficial effects that a higher CO2 concentration has on plant productivity remain active."

Even if the geoengineering would help crop yields overall, the models predict that some areas could be harmed by the geoengineering. And there are other risks that go beyond the direct impact on crop yields. For example, deployment of such systems might lead to political or even military conflict. Furthermore, these approaches do not solve the problem of ocean acidification, which is also caused by carbon dioxide emissions.

"The real world is much more complex than our climate models, so it would be premature to act based on model results like ours," Caldeira said. "But desperate people do desperate things. Therefore, it is important to understand the consequences of actions that do not strike us as being particularly good ideas."

"The climate system is not well enough understood to exclude the risks of severe unanticipated climate changes, whether due to our fossil-fuel emissions or due to intentional intervention in the climate system," Pongratz said. "Reducing greenhouse gas emissions is therefore likely a safer option than geoengineering to avert risks to global food security."

The Department of Global Ecology was established in 2002 to help build the scientific foundations for a sustainable future. The department is located on the campus of Stanford University, but is an independent research organization funded by the Carnegie Institution. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Ken Caldeira | EurekAlert!
Further information:
http://carnegiescience.edu/

More articles from Earth Sciences:

nachricht Researchers reveal how microbes cope in phosphorus-deficient tropical soil
23.01.2018 | DOE/Oak Ridge National Laboratory

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>