Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering could disrupt rainfall patterns

06.06.2012
A geoengineering solution to climate change could lead to significant rainfall reduction in Europe and North America, a team of European scientists concludes.
The researchers studied how models of the Earth in a warm, CO2-rich world respond to an artificial reduction in the amount of sunlight reaching the planet’s surface. The study is published today in Earth System Dynamics, an Open Access journal of the European Geosciences Union (EGU).

Tackling climate change by reducing the solar radiation reaching our planet using climate engineering, known also as geoengineering, could result in undesirable effects for the Earth and humankind. In particular, the work by the team of German, Norwegian, French, and UK scientists shows that disruption of global and regional rainfall patterns is likely in a geoengineered climate.

Volcanic eruptions, such as the one of the Karymsky volcano (Russia) in 2004, release sulphur dioxide to the atmosphere, which has a cooling effect. Geoengineering an ‘artificial volcano’ to mimic this release could be a solution to global warming, but one that may have undesirable effects for the Earth. (Photo by Alexander Belousov of the Earth Observatory of Singapore, distributed by EGU via imaggeo.net under a Creative Commons license.)

“Climate engineering cannot be seen as a substitute for a policy pathway of mitigating climate change through the reduction of greenhouse gas emissions,” they conclude in the paper.

Geoengineering techniques to reduce the amount of solar radiation reaching the Earth’s surface range from mimicking the effects of large volcanic eruptions by releasing sulphur dioxide into the atmosphere to deploying giant mirrors in space. Scientists have proposed these sunlight-reflecting solutions as last-ditch attempts to halt global warming.

But what would such an engineered climate be like?

To answer this question, the researchers studied how four Earth models respond to climate engineering under a specific scenario. This hypothetical scenario assumes a world with a CO2 concentration that is four times higher than preindustrial levels, but where the extra heat caused by such an increase is balanced by a reduction of radiation we receive from the Sun.

“A quadrupling of CO2 is at the upper end, but still in the range of what is considered possible at the end of the 21st century,” says Hauke Schmidt, researcher at the Max Planck Institute for Meteorology in Germany and lead author of the paper.

Under the scenario studied, rainfall strongly decreases – by about 15 percent (some 100 millimetres of rain per year) of preindustrial precipitation values – in large areas of North America and northern Eurasia. Over central South America, all models show a decrease in rainfall that reaches more than 20 percent in parts of the Amazon region. Other tropical regions see similar changes, both negative and positive. Overall, global rainfall is reduced by about five percent on average in all four models studied.

“The impacts of these changes are yet to be addressed, but the main message is that the climate produced by geoengineering is different to any earlier climate even if the global mean temperature of an earlier climate might be reproduced,” says Schmidt.

The authors note that the scenario studied is not intended to be realistic for a potential future application of climate engineering. But the experiment allows the researchers to clearly identify and compare basic responses of the Earth’s climate to geoengineering, laying the groundwork for more detailed future studies.

“This study is the first clean comparison of different models following a strict simulation protocol, allowing us to estimate the robustness of the results. Additionally we are using the newest breed of climate models, the ones that will provide results for the Fifth IPCC [Intergovernmental Panel on Climate Change] Report,” explains Schmidt.
The scientists used climate models developed by the UK Met Office’s Hadley Centre, the Institut Pierre Simon Laplace in France, and the Max Planck Institute in Germany. Norwegian scientists developed the fourth Earth model used.

Information for editors
This research is presented in the paper ‘Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: Climate responses simulated by four Earth system models’ to appear in the EGU Open Access journal Earth System Dynamics on 06 May 2012.

The scientific article is available online, from the publication date onwards, at http://www.earth-syst-dynam.net/recent_papers.html

The discussion paper (not peer-reviewed) and reviewers comments is available at http://www.earth-syst-dynam-discuss.net/3/31/2012/esdd-3-31-2012-discussion.html

The team is composed of H. Schmidt (Max Planck Institute for Meteorology, Hamburg, Germany [MPIMet]), K. Alterskjær (University of Oslo, Oslo, Norway [UIO]), D. Bou Karam (Laboratoire des Sciences du Climate et l’Environnement, Gif-sur-Yvette, France), O. Boucher (Met Office Hadley Centre, Exeter, UK [Met Office] and Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace/CNRS, Paris, France), A. Jones (Met Office), J.E. Kristjansson (UIO), U. Niemeier (MPIMet), M. Schulz (Norwegian Meteorological Institute, Oslo, Norway), A. Aaheim (Cicero, Oslo, Norway), F. Benduhn (Max Planck Institute for Chemistry, Mainz, Germany [MPIC]), M. Lawrence (MPIC and Institute of Advanced Sustainability Studies, Potsdam, Germany), and C. Timmreck (MPIMet).

The European Geosciences Union (EGU, http://www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 14 diverse scientific journals, which use an innovative open-access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate change, and renewable energies.

Contacts
Hauke Schmidt
Max Planck Institute for Meteorology
Hamburg, Germany
Tel: +49-40-41173-405
Email: hauke.schmidt@zmaw.de
Bárbara T. Ferreira
EGU Media and Communications Officer
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Dr. Bárbara T. Ferreira | idw
Further information:
http://www.egu.eu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>