Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering could disrupt rainfall patterns

06.06.2012
A geoengineering solution to climate change could lead to significant rainfall reduction in Europe and North America, a team of European scientists concludes.
The researchers studied how models of the Earth in a warm, CO2-rich world respond to an artificial reduction in the amount of sunlight reaching the planet’s surface. The study is published today in Earth System Dynamics, an Open Access journal of the European Geosciences Union (EGU).

Tackling climate change by reducing the solar radiation reaching our planet using climate engineering, known also as geoengineering, could result in undesirable effects for the Earth and humankind. In particular, the work by the team of German, Norwegian, French, and UK scientists shows that disruption of global and regional rainfall patterns is likely in a geoengineered climate.

Volcanic eruptions, such as the one of the Karymsky volcano (Russia) in 2004, release sulphur dioxide to the atmosphere, which has a cooling effect. Geoengineering an ‘artificial volcano’ to mimic this release could be a solution to global warming, but one that may have undesirable effects for the Earth. (Photo by Alexander Belousov of the Earth Observatory of Singapore, distributed by EGU via imaggeo.net under a Creative Commons license.)

“Climate engineering cannot be seen as a substitute for a policy pathway of mitigating climate change through the reduction of greenhouse gas emissions,” they conclude in the paper.

Geoengineering techniques to reduce the amount of solar radiation reaching the Earth’s surface range from mimicking the effects of large volcanic eruptions by releasing sulphur dioxide into the atmosphere to deploying giant mirrors in space. Scientists have proposed these sunlight-reflecting solutions as last-ditch attempts to halt global warming.

But what would such an engineered climate be like?

To answer this question, the researchers studied how four Earth models respond to climate engineering under a specific scenario. This hypothetical scenario assumes a world with a CO2 concentration that is four times higher than preindustrial levels, but where the extra heat caused by such an increase is balanced by a reduction of radiation we receive from the Sun.

“A quadrupling of CO2 is at the upper end, but still in the range of what is considered possible at the end of the 21st century,” says Hauke Schmidt, researcher at the Max Planck Institute for Meteorology in Germany and lead author of the paper.

Under the scenario studied, rainfall strongly decreases – by about 15 percent (some 100 millimetres of rain per year) of preindustrial precipitation values – in large areas of North America and northern Eurasia. Over central South America, all models show a decrease in rainfall that reaches more than 20 percent in parts of the Amazon region. Other tropical regions see similar changes, both negative and positive. Overall, global rainfall is reduced by about five percent on average in all four models studied.

“The impacts of these changes are yet to be addressed, but the main message is that the climate produced by geoengineering is different to any earlier climate even if the global mean temperature of an earlier climate might be reproduced,” says Schmidt.

The authors note that the scenario studied is not intended to be realistic for a potential future application of climate engineering. But the experiment allows the researchers to clearly identify and compare basic responses of the Earth’s climate to geoengineering, laying the groundwork for more detailed future studies.

“This study is the first clean comparison of different models following a strict simulation protocol, allowing us to estimate the robustness of the results. Additionally we are using the newest breed of climate models, the ones that will provide results for the Fifth IPCC [Intergovernmental Panel on Climate Change] Report,” explains Schmidt.
The scientists used climate models developed by the UK Met Office’s Hadley Centre, the Institut Pierre Simon Laplace in France, and the Max Planck Institute in Germany. Norwegian scientists developed the fourth Earth model used.

Information for editors
This research is presented in the paper ‘Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: Climate responses simulated by four Earth system models’ to appear in the EGU Open Access journal Earth System Dynamics on 06 May 2012.

The scientific article is available online, from the publication date onwards, at http://www.earth-syst-dynam.net/recent_papers.html

The discussion paper (not peer-reviewed) and reviewers comments is available at http://www.earth-syst-dynam-discuss.net/3/31/2012/esdd-3-31-2012-discussion.html

The team is composed of H. Schmidt (Max Planck Institute for Meteorology, Hamburg, Germany [MPIMet]), K. Alterskjær (University of Oslo, Oslo, Norway [UIO]), D. Bou Karam (Laboratoire des Sciences du Climate et l’Environnement, Gif-sur-Yvette, France), O. Boucher (Met Office Hadley Centre, Exeter, UK [Met Office] and Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace/CNRS, Paris, France), A. Jones (Met Office), J.E. Kristjansson (UIO), U. Niemeier (MPIMet), M. Schulz (Norwegian Meteorological Institute, Oslo, Norway), A. Aaheim (Cicero, Oslo, Norway), F. Benduhn (Max Planck Institute for Chemistry, Mainz, Germany [MPIC]), M. Lawrence (MPIC and Institute of Advanced Sustainability Studies, Potsdam, Germany), and C. Timmreck (MPIMet).

The European Geosciences Union (EGU, http://www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 14 diverse scientific journals, which use an innovative open-access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate change, and renewable energies.

Contacts
Hauke Schmidt
Max Planck Institute for Meteorology
Hamburg, Germany
Tel: +49-40-41173-405
Email: hauke.schmidt@zmaw.de
Bárbara T. Ferreira
EGU Media and Communications Officer
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Dr. Bárbara T. Ferreira | idw
Further information:
http://www.egu.eu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>