Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering could complement mitigation to cool the climate

28.01.2009
The first comprehensive assessment of the climate cooling potential of different geoengineering schemes has been carried out by researchers at the University of East Anglia (UEA).

Funded by the Natural Environment Research Council and published today in the journal ‘Atmospheric Chemistry and Physics Discussions’, the key findings include:

•Enhancing carbon sinks could bring CO2 back to its pre-industrial level, but not before 2100 – and only when combined with strong mitigation of CO2 emissions

•Stratospheric aerosol injections and sunshades in space have by far the greatest potential to cool the climate by 2050 - but also carry the greatest risk

•Surprisingly, existing activities that add phosphorous to the ocean may have greater long-term carbon sequestration potential than deliberately adding iron or nitrogen

•On land, sequestering carbon in new forests and as ‘bio-char’ (charcoal added back to the soil) have greater short-term cooling potential than ocean fertilisation

•Increasing the reflectivity of urban areas could reduce urban heat islands but will have minimal global effect

•Other globally ineffective schemes include ocean pipes and stimulating biologically-driven increases in cloud reflectivity

•The beneficial effects of some geo-engineering schemes have been exaggerated in the past and significant errors made in previous calculations

“The realisation that existing efforts to mitigate the effects of human-induced climate change are proving wholly ineffectual has fuelled a resurgence of interest in geo-engineering,” said lead author Prof Tim Lenton of UEA’s School of Environmental Sciences.

“This paper provides the first extensive evaluation of their relative merits in terms of their climate cooling potential and should help inform the prioritisation of future research.”

Geo-engineering is the large-scale engineering of the environment to combat the effects of climate change – in particular to counteract the effects of increased CO2 in the atmosphere.

A number of schemes have been suggested including nutrient fertilisation of the oceans, cloud seeding, sunshades in space, stratospheric aerosol injections, and ocean pipes.

“We found that some geoengineering options could usefully complement mitigation, and together they could cool the climate, but geoengineering alone cannot solve the climate problem,” said Prof Lenton.

Injections into the stratosphere of sulphate or other manufactured particles have the greatest potential to cool the climate back to pre-industrial temperatures by 2050.

However, they also carry the most risk because they would have to be continually replenished and if deployment was suddenly stopped, extremely rapid warming could ensue.

Using biomass waste and new forestry plantations for energy, and combusting them in a way that captures carbon as charcoal, which is added back to the soil as ‘bio-char’, could have win-win benefits for soil fertility as well as the climate.

A new combined heat and power plant at UEA is pioneering this type of technology.

UEA’s School of Environmental Sciences leads the world in climate change research and is creating a new GeoEngineering Assessment & Research initiative (GEAR) to take this groundbreaking work forward.

It will be funded partly by a donation from the Norfolk Charitable Trust.

‘The radiative forcing potential of different climate geo-engineering options’ by Tim Lenton and Nem Vaughan is published on January 28 by Atmospheric Chemistry and Physics Discussions.

Press Office | alfa
Further information:
http://www.uea.ac.uk
http://www.atmos-chem-phys-discuss.net/papers_in_open_discussion.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>