Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering could complement mitigation to cool the climate

28.01.2009
The first comprehensive assessment of the climate cooling potential of different geoengineering schemes has been carried out by researchers at the University of East Anglia (UEA).

Funded by the Natural Environment Research Council and published today in the journal ‘Atmospheric Chemistry and Physics Discussions’, the key findings include:

•Enhancing carbon sinks could bring CO2 back to its pre-industrial level, but not before 2100 – and only when combined with strong mitigation of CO2 emissions

•Stratospheric aerosol injections and sunshades in space have by far the greatest potential to cool the climate by 2050 - but also carry the greatest risk

•Surprisingly, existing activities that add phosphorous to the ocean may have greater long-term carbon sequestration potential than deliberately adding iron or nitrogen

•On land, sequestering carbon in new forests and as ‘bio-char’ (charcoal added back to the soil) have greater short-term cooling potential than ocean fertilisation

•Increasing the reflectivity of urban areas could reduce urban heat islands but will have minimal global effect

•Other globally ineffective schemes include ocean pipes and stimulating biologically-driven increases in cloud reflectivity

•The beneficial effects of some geo-engineering schemes have been exaggerated in the past and significant errors made in previous calculations

“The realisation that existing efforts to mitigate the effects of human-induced climate change are proving wholly ineffectual has fuelled a resurgence of interest in geo-engineering,” said lead author Prof Tim Lenton of UEA’s School of Environmental Sciences.

“This paper provides the first extensive evaluation of their relative merits in terms of their climate cooling potential and should help inform the prioritisation of future research.”

Geo-engineering is the large-scale engineering of the environment to combat the effects of climate change – in particular to counteract the effects of increased CO2 in the atmosphere.

A number of schemes have been suggested including nutrient fertilisation of the oceans, cloud seeding, sunshades in space, stratospheric aerosol injections, and ocean pipes.

“We found that some geoengineering options could usefully complement mitigation, and together they could cool the climate, but geoengineering alone cannot solve the climate problem,” said Prof Lenton.

Injections into the stratosphere of sulphate or other manufactured particles have the greatest potential to cool the climate back to pre-industrial temperatures by 2050.

However, they also carry the most risk because they would have to be continually replenished and if deployment was suddenly stopped, extremely rapid warming could ensue.

Using biomass waste and new forestry plantations for energy, and combusting them in a way that captures carbon as charcoal, which is added back to the soil as ‘bio-char’, could have win-win benefits for soil fertility as well as the climate.

A new combined heat and power plant at UEA is pioneering this type of technology.

UEA’s School of Environmental Sciences leads the world in climate change research and is creating a new GeoEngineering Assessment & Research initiative (GEAR) to take this groundbreaking work forward.

It will be funded partly by a donation from the Norfolk Charitable Trust.

‘The radiative forcing potential of different climate geo-engineering options’ by Tim Lenton and Nem Vaughan is published on January 28 by Atmospheric Chemistry and Physics Discussions.

Press Office | alfa
Further information:
http://www.uea.ac.uk
http://www.atmos-chem-phys-discuss.net/papers_in_open_discussion.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>