Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering could complement mitigation to cool the climate

28.01.2009
The first comprehensive assessment of the climate cooling potential of different geoengineering schemes has been carried out by researchers at the University of East Anglia (UEA).

Funded by the Natural Environment Research Council and published today in the journal ‘Atmospheric Chemistry and Physics Discussions’, the key findings include:

•Enhancing carbon sinks could bring CO2 back to its pre-industrial level, but not before 2100 – and only when combined with strong mitigation of CO2 emissions

•Stratospheric aerosol injections and sunshades in space have by far the greatest potential to cool the climate by 2050 - but also carry the greatest risk

•Surprisingly, existing activities that add phosphorous to the ocean may have greater long-term carbon sequestration potential than deliberately adding iron or nitrogen

•On land, sequestering carbon in new forests and as ‘bio-char’ (charcoal added back to the soil) have greater short-term cooling potential than ocean fertilisation

•Increasing the reflectivity of urban areas could reduce urban heat islands but will have minimal global effect

•Other globally ineffective schemes include ocean pipes and stimulating biologically-driven increases in cloud reflectivity

•The beneficial effects of some geo-engineering schemes have been exaggerated in the past and significant errors made in previous calculations

“The realisation that existing efforts to mitigate the effects of human-induced climate change are proving wholly ineffectual has fuelled a resurgence of interest in geo-engineering,” said lead author Prof Tim Lenton of UEA’s School of Environmental Sciences.

“This paper provides the first extensive evaluation of their relative merits in terms of their climate cooling potential and should help inform the prioritisation of future research.”

Geo-engineering is the large-scale engineering of the environment to combat the effects of climate change – in particular to counteract the effects of increased CO2 in the atmosphere.

A number of schemes have been suggested including nutrient fertilisation of the oceans, cloud seeding, sunshades in space, stratospheric aerosol injections, and ocean pipes.

“We found that some geoengineering options could usefully complement mitigation, and together they could cool the climate, but geoengineering alone cannot solve the climate problem,” said Prof Lenton.

Injections into the stratosphere of sulphate or other manufactured particles have the greatest potential to cool the climate back to pre-industrial temperatures by 2050.

However, they also carry the most risk because they would have to be continually replenished and if deployment was suddenly stopped, extremely rapid warming could ensue.

Using biomass waste and new forestry plantations for energy, and combusting them in a way that captures carbon as charcoal, which is added back to the soil as ‘bio-char’, could have win-win benefits for soil fertility as well as the climate.

A new combined heat and power plant at UEA is pioneering this type of technology.

UEA’s School of Environmental Sciences leads the world in climate change research and is creating a new GeoEngineering Assessment & Research initiative (GEAR) to take this groundbreaking work forward.

It will be funded partly by a donation from the Norfolk Charitable Trust.

‘The radiative forcing potential of different climate geo-engineering options’ by Tim Lenton and Nem Vaughan is published on January 28 by Atmospheric Chemistry and Physics Discussions.

Press Office | alfa
Further information:
http://www.uea.ac.uk
http://www.atmos-chem-phys-discuss.net/papers_in_open_discussion.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>