Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering could complement mitigation to cool the climate

28.01.2009
The first comprehensive assessment of the climate cooling potential of different geoengineering schemes has been carried out by researchers at the University of East Anglia (UEA).

Funded by the Natural Environment Research Council and published today in the journal ‘Atmospheric Chemistry and Physics Discussions’, the key findings include:

•Enhancing carbon sinks could bring CO2 back to its pre-industrial level, but not before 2100 – and only when combined with strong mitigation of CO2 emissions

•Stratospheric aerosol injections and sunshades in space have by far the greatest potential to cool the climate by 2050 - but also carry the greatest risk

•Surprisingly, existing activities that add phosphorous to the ocean may have greater long-term carbon sequestration potential than deliberately adding iron or nitrogen

•On land, sequestering carbon in new forests and as ‘bio-char’ (charcoal added back to the soil) have greater short-term cooling potential than ocean fertilisation

•Increasing the reflectivity of urban areas could reduce urban heat islands but will have minimal global effect

•Other globally ineffective schemes include ocean pipes and stimulating biologically-driven increases in cloud reflectivity

•The beneficial effects of some geo-engineering schemes have been exaggerated in the past and significant errors made in previous calculations

“The realisation that existing efforts to mitigate the effects of human-induced climate change are proving wholly ineffectual has fuelled a resurgence of interest in geo-engineering,” said lead author Prof Tim Lenton of UEA’s School of Environmental Sciences.

“This paper provides the first extensive evaluation of their relative merits in terms of their climate cooling potential and should help inform the prioritisation of future research.”

Geo-engineering is the large-scale engineering of the environment to combat the effects of climate change – in particular to counteract the effects of increased CO2 in the atmosphere.

A number of schemes have been suggested including nutrient fertilisation of the oceans, cloud seeding, sunshades in space, stratospheric aerosol injections, and ocean pipes.

“We found that some geoengineering options could usefully complement mitigation, and together they could cool the climate, but geoengineering alone cannot solve the climate problem,” said Prof Lenton.

Injections into the stratosphere of sulphate or other manufactured particles have the greatest potential to cool the climate back to pre-industrial temperatures by 2050.

However, they also carry the most risk because they would have to be continually replenished and if deployment was suddenly stopped, extremely rapid warming could ensue.

Using biomass waste and new forestry plantations for energy, and combusting them in a way that captures carbon as charcoal, which is added back to the soil as ‘bio-char’, could have win-win benefits for soil fertility as well as the climate.

A new combined heat and power plant at UEA is pioneering this type of technology.

UEA’s School of Environmental Sciences leads the world in climate change research and is creating a new GeoEngineering Assessment & Research initiative (GEAR) to take this groundbreaking work forward.

It will be funded partly by a donation from the Norfolk Charitable Trust.

‘The radiative forcing potential of different climate geo-engineering options’ by Tim Lenton and Nem Vaughan is published on January 28 by Atmospheric Chemistry and Physics Discussions.

Press Office | alfa
Further information:
http://www.uea.ac.uk
http://www.atmos-chem-phys-discuss.net/papers_in_open_discussion.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>