Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geoengineering the climate would reduce vital rains

Although a significant build-up in greenhouse gases in the atmosphere would alter worldwide precipitation patterns, a widely discussed technological approach to reducing future global warming would also interfere with rainfall and snowfall, new research shows.

The international study finds that a massive increase in greenhouse gases and warming of the planet would spur a nearly 7 percent global increase in precipitation, on average, compared to preindustrial conditions.

Monsoon rainfall wets Beijing streets and passersby in 2011. New research indicates geoengineering to reduce global warming would also reduce average global precipitation. Credit: Sierra F.

But, trying to resolve the problem through “geoengineering” could result in important seasonal rainfalls, known as monsoonal rains, in North America, East Asia, and other regions dropping by 5-7 percent compared to preindustrial conditions. Globally, average precipitation could decrease by about 4.5 percent.

“Geoengineering the planet doesn’t cure the problem,” said Simone Tilmes of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., and lead author of the new study. “Even if one of these techniques could keep global temperatures approximately balanced, precipitation would not return to normal conditions.”

As concerns have mounted about climate change, scientists have studied geoengineering approaches to reduce future warming. Some of these would capture carbon dioxide before it enters the atmosphere. Others would attempt to shade the atmosphere by injecting sulfate particles into the stratosphere or even launching mirrors into orbit with the goal of reducing global surface temperatures.

The new study focuses on the second set of approaches, those that would shade the planet. It warns however, that Earth’s climate would not return to its preindustrial state even if the warming itself were successfully mitigated.

“It’s very much a pick-your-poison type of problem,” said John Fasullo, also of NCAR and a study co-author. “If you don’t like warming, you can reduce the amount of sunlight reaching the surface and cool climate. But if you do that, large reductions in rainfall are unavoidable. There’s no win-win option here.”

The study appears in an online issue of the Journal of Geophysical Research: Atmospheres, published this week by the American Geophysical Union. It was written by an international team of scientists from NCAR and 14 other organizations, and was funded in part by the National Science Foundation (NSF), which sponsors NCAR. The team used, among other tools, the NCAR-based Community Earth System Model, which is funded by NSF and the Department of Energy.

Future carbon dioxide, with or without geoengineering

The research team turned to 12 of the world’s leading climate models to simulate global precipitation patterns if the atmospheric level of carbon dioxide, a leading greenhouse gas, reached four times the level of the preindustrial era. They then simulated the effect of reduced incoming solar radiation on the global precipitation patterns.

The scientists chose the artificial scenario of a quadrupling of carbon dioxide levels, which is on the high side of projections for the end of this century, in order to clearly draw out the potential impacts of geoengineering.

In line with other research, they found that an increase in carbon dioxide levels would significantly increase global average precipitation, although there would likely be significant regional variations and even prolonged droughts in some areas.

Much of the reason for the increased rainfall and snowfall has to do with greater evaporation, pumping more moisture into the atmosphere as a result of more heat being trapped near the surface.

The team then took the research one step further, examining what would happen if a geoengineering approach partially reflected incoming solar radiation high in the atmosphere.

The researchers found that precipitation amount and frequency, especially for heavy rain events, would decrease significantly. The effects were greater over land than over the ocean, and particularly pronounced during months of heavy, monsoonal rains. Monsoonal rains in the model simulations dropped by an average of 7 percent in North America, 6 percent in East Asia and South America, and 5 percent in South Africa. In India, however, the decrease was just 2 percent. Heavy precipitation further dropped in Western Europe and North America in summer.

A drier atmosphere

The researchers found two primary reasons for the reduced precipitation.

One reason has to do with evaporation. As Earth is shaded and less solar heat reaches the surface, less water vapor is pumped into the atmosphere through evaporation.

The other reason has to do with plants. With more carbon dioxide in the atmosphere, plants partially close their stomata, the openings that allow them to take in carbon dioxide while releasing oxygen and water into the atmosphere. Partially shut stomata release less water, so the cooled atmosphere would also become even drier over land.

Tilmes stressed that the authors did not address such questions as how certain crops would respond to a combination of higher carbon dioxide and reduced rainfall.

“More research could show both the positive and negative consequences for society of such changes in the environment,” she said. “What we do know is that our climate system is very complex, that human activity is making Earth warmer, and that any technological fix we might try to shade the planet could have unforeseen consequences.”

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this early view article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Thomas Sumner at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.


“The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project”


Olivier Boucher and Michael Schulz
Laboratoire de Météorologie Dynamique, IPSL, CNRS/UPMC, Paris, France
Jason N. S. Cole
Canadian Centre for Climate Modeling and Analysis, Environment Canada, Toronto, Ontario, Canada
Charles L. Curry
School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
Andy Jones and Jim Haywood
Met Office Hadley Centre, Exeter, UK
Peter J. Irvine
Institute for Advanced Sustainability Studies, Potsdam, Germany;
Duoying Ji and John C. Moore
State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China.
Diana B. Karam
Laboratoire des Sciences du Climat et l’Environnement, CEA, CNRS, UVSQ, Gif-sur-Yvette, France;
Ben Kravitz, Philip J. Rasch, Balwinder Singh and Jin-Ho Yoon
Pacific Northwest National Laboratory, Richland, Washington, USA
Ulrike Niemeier and Hauke Schmidt
Max Planck Institute for Meteorology, Hamburg, Germany
Alan Robock
Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
Shuting Yang
Danish Meteorological Institute, Copenhagen, Denmark
Shingo Watanabe
Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Contact information for the authors:
Simone Tilmes, Phone: +1 (303) 497-1445, Email:
John Fasullo, Phone: +1 (303) 497-1712, Email:
AGU Contact:
Thomas Sumner
+1 (202) 777-7516
NCAR/UCAR Contacts:
David Hosansky,
+1 (303) 497-8611
Zhenya Gallon
+1 (303) 497-8607

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>