Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017

On the rust-colored north flank of one of Earth's largest volcanoes, a backpack-sized instrument monitors our atmosphere and, at the same time, helps set the stage for possible human exploration of other worlds.

Designed and built at NASA's Goddard Space Flight Center in Greenbelt, Maryland, the instrument tracks levels of methane and carbon dioxide, two gases crucial for studying the chemistry of Earth's atmosphere. Portable and nearly self-contained, the unit could represent the start of a low-cost global network to provide atmospheric monitoring even in hard-to-reach locations.


Field testing of a portable instrument to monitor carbon dioxide and methane in the atmosphere is under way on the Mauna Loa volcano. Developed by NASA's Goddard Space Flight Center, the mini-LHR instrument, or miniaturized laser heterodyne radiometer, is being tested in partnership with the six-person crew that's living in the habitat called HI-SEAS.

Credit: NASA's Goddard Space Flight Center/HI-SEAS

Recently, a Goddard team deployed the instrument for field testing high on Mauna Loa, in a remote region considered an analog site for Mars. There, the instrument is being maintained by the crew living in the habitat known as HI-SEAS--short for Hawai'i Space Exploration Analog and Simulation, a NASA-funded project run by the University of Hawai'i at Manoa to help prepare for the possibility of long-duration missions on the surfaces of other planets or moons.

"The partnership with HI-SEAS gives us a unique opportunity to test our instrument's performance and, at the same time, to help train the team to maintain and operate equipment under challenging conditions similar to those that explorers would face," said Goddard scientist Emily Wilson, who developed the instrument.

Called the miniaturized laser heterodyne radiometer, or mini-LHR, the instrument measures the total amount of methane and carbon dioxide in the atmospheric column, which is essentially a straight line from the ground to the top of the atmosphere. The system is passive, collecting only sunlight, and nothing leaves the unit--not even stray light. The instrument has sensitivities as low as 1 part per million for carbon dioxide and 10 parts per billion for methane.

Inside the unit, the sunlight gets mixed with a laser beam in a technique that's similar to the way an FM radio receiver operates. Instead of an antenna, the instrument is equipped with a telescope. To boost its sensitivity to weak signals, the mini-LHR carries a tiny infrared laser, like those used in telecommunications.

Atmospheric gases are identified by the absorption of light at particular infrared wavelengths; the pattern for each gas is as unique as a fingerprint. Right now, the instrument monitors carbon dioxide and methane, but it could be set up to track carbon monoxide and water vapor, as well.

Goddard's Jacob Bleacher, a planetary geologist collaborating with Wilson, envisions a time when instruments like this might be deployed on the surface of another world.

"We foresee a need for instrument packages designed for environmental monitoring at and around human landing sites on Mars or other planetary surfaces," said Bleacher. "To preserve our ability to conduct research in those locations, we will need to establish what the environment was like before human arrival and to monitor it the entire time humans are present."

Wilson partnered with Bleacher to develop a protocol to train the HI-SEAS crew to use the mini-LHR. Bleacher also will conduct follow-up studies to assess the effectiveness of the HI-SEAS training.

The challenging part of the training was that Wilson's team couldn't meet or speak to the HI-SEAS crew in person. That's because the 8-month habitat mission requires the crew to live the kind of confined, regimented lifestyle that future Mars astronauts might experience. They carry out scientific research and geological field work while carefully managing their consumption of food, water and power. The six-person team eats, sleeps and works in a dome that has about 1,200 square feet of floor space--the rough equivalent of a two-bedroom apartment.

The team conducts all communication either by email, with messages delayed by 20 minutes to simulate the travel time between Earth and Mars, or through a video link similar to the one used for the International Space Station. Whenever the crew exits the habitat, they wear full body suits, including helmets and gloves.

The decision not to train the HI-SEAS team to operate the mini-LHR before their mission began was intentional.

"Long-duration human stays on Mars will likely involve situations in which the crew would want to use the hardware available to them in new ways or for new purposes," said Bryan Caldwell, the HI-SEAS project manager. "Additional training would have to be done remotely in a situation like that."

At least once a week now, team members suit up and trek a quarter-mile across a rock-strewn expanse of solidified lava to check on Wilson's instrument and download the data onto a memory stick. To make it possible to do that while wearing bulky gloves, A. J. DiGregorio, a member of Wilson's team, equipped the unit with a touch screen and stylus, similar to the signature pads used in checkout lines at stores.

After the EVA, or extravehicular activity, is done, the team members return to the habitat and upload the data to share with Wilson's team. So far, Wilson is pleased with the data she has seen, and soon she will start comparing the readings to other data sets, such as the carbon dioxide measurements that have been made on Mauna Loa since 1958.

In the meantime, Wilson's team continues to focus on miniaturizing the mini-LHR's components. Her goal is to deploy a network of instruments, first on Earth and later, well, even the sky isn't the limit.

###

For more information about the mini-LHR instrument, please visit: https://ssed.gsfc.nasa.gov/mini-LHR/

Liz Zubritsky | EurekAlert!

Further reports about: Atmosphere Goddard Space Flight Center NASA carbon dioxide

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>