Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Finding Nemo to minerals – what riches lie in the deep sea?

29.07.2014

As fishing and the harvesting of metals, gas and oil have expanded deeper and deeper into the ocean, scientists are drawing attention to the services provided by the deep sea, the world’s largest environment.

“This is the time to discuss deep-sea stewardship before exploitation is too much farther underway,” says lead-author Andrew Thurber. In a review published today in Biogeosciences, a journal of the European Geosciences Union (EGU), Thurber and colleagues summarise what this habitat provides to humans, and emphasise the need to protect it.


Gorgonocephalus caputmedusae (pictured) was the first species ever recovered from the deep sea.

SERPENT Project/D.O.B. Jones

“The deep sea realm is so distant, but affects us in so many ways. That’s where the passion lies: to tell everyone what’s down there and that we still have a lot to explore,” says co-author Jeroen Ingels of Plymouth Marine Laboratory in the UK.

“What we know highlights that it provides much directly to society,” says Thurber, a researcher at the College of Earth, Ocean and Atmospheric Sciences at Oregon State University in the US. Yet, the deep sea is facing impacts from climate change and, as resources are depleted elsewhere, is being increasingly exploited by humans for food, energy and metals like gold and silver.

“We felt we had to do something,” says Ingels. “We all felt passionate about placing the deep sea in a relevant context and found that there was little out there aimed at explaining what the deep sea does for us to a broad audience that includes scientists, the non-specialists and ultimately the policy makers. There was a gap to be filled. So we said: 'Let’s just make this happen’.”

In the review of over 200 scientific papers, the international team of researchers points out how vital the deep sea is to support our current way of life. It nurtures fish stocks, serves as a dumping ground for our waste, and is a massive reserve of oil, gas, precious metals and the rare minerals we use in modern electronics, such as cell phones and hybrid-car batteries. Further, hydrothermal vents and other deep-sea environments host life forms, from bacteria to sponges, that are a source of new antibiotics and anti-cancer chemicals. It also has a cultural value, with its strange species and untouched habitats inspiring books and films from 20,000 Leagues Under the Sea to Finding Nemo.

“From jewellery to oil and gas and future potential energy reserves as well as novel pharmaceuticals, deep-sea’s worth should be recognised so that, as we decide how to use it more in the future, we do not inhibit or lose the services that it already provides,” says Thurber.

The deep sea (ocean areas deeper than 200m) represents 98.5% of the volume of our planet that is hospitable to animals. It has received less attention than other environments because it is vast, dark and remote, and much of it is inaccessible to humans. But it has important global functions. In the Biogeosciences review the team shows that deep-sea marine life plays a crucial role in absorbing carbon dioxide from the atmosphere, as well as methane that occasionally leaks from under the seafloor. In doing so, the deep ocean has limited much of the effects of climate change.

This type of process occurs over a vast area and at a slow rate. Thurber gives other examples: manganese nodules, deep-sea sources of nickel, copper, cobalt and rare earth minerals, take centuries or longer to form and are not renewable. Likewise, slow-growing and long-lived species of fish and coral in the deep sea are more susceptible to overfishing. “This means that a different approach needs to be taken as we start harvesting the resources within it.”

By highlighting the importance of the deep sea and identifying the traits that differentiate this environment from others, the researchers hope to provide the tools for effective and sustainable management of this habitat.

“This study is one of the steps in making sure that the benefits of the deep sea are understood by those who are trying to, or beginning to, regulate its resources,” concludes Thurber. “We ultimately hope that it will be a useful tool for policy makers.”


Please mention the name of the publication (Biogeosciences) if reporting on this story and, if reporting online, include a link to the paper or to the journal website (http://www.biogeosciences.net/).

More information
The research was the result of a workshop at the International Research Institute of Stavanger in Norway, supported by INDEEP (the International Network for Scientific Investigations of Deep-Sea Ecosystems) through a grant awarded by the Total Foundation. The authors declare no competing interests and that the funding agency had no input into the content of their review article.

This research is presented in the paper ‘Ecosystem function and services provided by the deep sea’ to appear in the EGU open access journal Biogeosciences on 29 July 2014.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.biogeosciences.net/recent_papers.html. A pre-print copy of the peer-reviewed paper is available for download at http://www.egu.eu/news/116/from-finding-nemo-to-minerals-what-riches-lie-in-the-....

The team is composed of A. R. Thurber (College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, USA), A. K. Sweetman (International Research Institute of Stavanger, Randaberg, Norway), B. E. Narayanaswamy (Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK), D. O. B. Jones (National Oceanography Centre, Southampton, UK), J. Ingels (Plymouth Marine Laboratory, UK), and R. L. Hansman (Department of Limnology and Oceanography, University of Vienna, Austria).

The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 16 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2015 EGU General Assembly is taking place is Vienna, Austria from 12 to 17 April 2015. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.


Contacts
Andrew Thurber
Assistant Professor (Senior Research), Ocean Ecology and Biogeochemistry
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University
Corvallis, USA
Tel.: +1-541-737-4500
Email: athurber@coas.oregonstate.edu

Jeroen Ingels
Postdoctoral Researcher, Marine Ecology
Plymouth Marine Laboratory
Plymouth, Devon, United Kingdom
Tel.: +44-1752-633-476
Email: jein@pml.ac.uk

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Weitere Informationen:

http://www.biogeosciences.net/ (Journal)
http://www.egu.eu/news/116/from-finding-nemo-to-minerals-what-riches-lie-in-the-... (EGU press release, including images and pre-print version of the paper)

Dr. Bárbara Ferreira | idw - Informationsdienst Wissenschaft

Further reports about: Atmospheric Biogeosciences EGU Earth Geosciences Laboratory Marine Ocean resources

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>