Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freshwater Methane Release Changes Greenhouse Gas Equation

07.01.2011
An international team of scientists has released data indicating that greenhouse gas uptake by continents is less than previously thought because of methane emissions from freshwater areas.

John Downing, an Iowa State University professor in the ecology, evolution and organismal biology department, is part of an international team that concluded that methane release from inland waters is higher than previous estimates.

The study, published in the journal Science, indicates that methane gas release from freshwater areas changes the net absorption of greenhouse gases by natural continental environments, such as forests, by at least 25 percent. Past analyses of carbon and greenhouse gas exchanges on continents failed to account for the methane gas that is naturally released from lakes and running water.

Downing, a laboratory limnologist at Iowa State, has also conducted research measuring the amount of carbon sequestered in lake and pond sediment. This new study gives scientists a better understanding of the balance between carbon sequestration and greenhouse gas releases from fresh water bodies.

“Methane is a greenhouse gas that is more potent than carbon dioxide in the global change scenario,” Downing said. “The bottom line is that we have uncovered an important accounting error in the global carbon budget. Acre for acre, lakes, ponds, rivers and streams are many times more active in carbon processing than seas or land surfaces, so they need to be included in global carbon budgets.”

Methane emissions from lakes and running water occur naturally, but have been difficult to assess. David Bastviken, principal author and professor in the department of water and environmental studies, at Linköping University in Sweden, said small methane emissions from the surfaces of water bodies occur continuously.

“Greater emissions occur suddenly and with irregular timing, when methane bubbles from the sediment reach the atmosphere, and such fluxes have been difficult to measure,” Bastviken said.

The greenhouse effect is caused by human emission of gasses that act like a blanket and trap heat inside the Earth’s atmosphere, according to the International Panel on Climate Change. Some ecosystems, such as forests can absorb and store greenhouse gasses. The balance between emissions and uptake determine how climate will change. The role of freshwater environments has been unclear in previous budgets, Downing said.

The researchers studied methane fluxes from 474 freshwater areas and calculated emission based on new estimates of the global area covered by inland waters. The international team also included: Lars Tranvik, Uppsala University; Patrick Crill, Stockholm University; and Alex Enrich-Prast, University Federal of Rio de Janeiro.

Contacts
John Downing, Ecology, Evolution and Organismal Biology, (515) 231-5376, downing@iastate.edu

Ed Adcock, Communications Service, (515) 294-2314, edadcock@iastate.edu

John Downing | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>