Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh Water Breathes Fresh Life Into Hurricanes

15.08.2012
An analysis of a decade's worth of tropical cyclones shows that when hurricanes blow over ocean regions swamped by fresh water, the conditions can unexpectedly intensify the storm.

Although the probability that hurricanes will hit such conditions is small, ranging from 10 to 23 percent, the effect is potentially large: Hurricanes can become 50 percent more intense, researchers report in a study appearing this week in Proceedings of the National Academy of Sciences Early Edition.

These results might help improve predictions of a hurricane's power in certain regions. Such conditions occur where large river systems pour fresh water into the ocean, such as by the Amazon River system or the Ganges River system, or where tropical storms rain considerably, as in the western Pacific Ocean.

"Sixty percent of the world's population lives in areas affected by tropical cyclones," said ocean scientist Karthik Balaguru at the Department of Energy's Pacific Northwest National Laboratory. "Cyclone Nargis killed more than one hundred and thirty eight thousand people in Burma in 2008. We can predict the paths cyclones take, but we need to predict their intensity better to protect people susceptible to their destructive power."

Most hurricanes passing over the ocean lessen in strength as the ocean water cools off due to mixing by the strong winds under the cyclone: this pumps less heat into them. However, Balaguru, his PNNL colleagues and researchers led by Ping Chang at Texas A&M University and Ocean University of China in Qingdao, China found that when enough fresh water pours into the ocean to form what they call a barrier layer, typically about 50 meters below the surface, the ocean water can't cool as much and continues to pump heat into the cyclone. Instead of dying out, the storms grow in intensity by 50 percent on average.

A rough estimate for the destruction wreaked by a hurricane is the cube of its intensity. "A 50 percent increase in intensity can result in a much larger amount of destruction and death," said Balaguru.

Heat of the Ocean

Satellites are very useful for tracking and helping to predict the path of tropical storms as they move across the ocean and develop into cyclones, as well as predicting where the storms will make landfall.

But current technology isn't as good at predicting how intense the storm will be when it does. Satellites can only see the ocean from above, but it's the ocean's heat that feeds the storm. So Balaguru decided to look at the ocean itself.

To do so, Balaguru started with one hurricane: Omar. Omar nearly topped the scales as a Category 4 storm in the eastern Caribbean Sea in October 2008, causing $79 million in damages. Balaguru and colleagues collected data about ocean conditions including water temperature, salt content, and water density, and compared that data to the intensity of the storm.

Feeding Omar

Most of the time, a tropical storm travels across the ocean, where its winds suck up heat from the ocean and builds. But then the heat loss from the water mixes the surface layer -- the warmest, least dense layer of ocean water -- and dredges up colder water from the ocean below it. The colder water cools off the surface temperature, providing less energy and lessening the storm's intensity.

It made sense that conditions that would prevent the top ocean layer from cooling off would increase the intensity of storms, so Balaguru zoomed in on Omar's conditions. As expected, the ocean surface cooled the least along Omar's path as the storm peaked in intensity.

However, when Balaguru looked at the structure of the ocean along Omar's path, he saw another layer, called a barrier layer, between the surface and the colder ocean below. Omar's most intense episodes occurred when it found itself over these thick barrier layers.

But Omar was just one storm. To determine whether the barrier layer connection was real, Balaguru looked at hundreds more tropical storms.

Insulation

Balaguru and colleagues examined 587 tropical storms and cyclones between 1998 and 2007 in the western tropical Atlantic, the western Pacific and the northern Indian Oceans.

They found that the tropical storms over thick barrier layers cooled off 36 percent less than storms over areas lacking barrier layers, and barrier layer storms drew 7 percent more heat from the ocean than other storms. That translated into 50 percent more intense hurricanes on average.

The barrier layer has this effect on storms, Balaguru said, because it insulates the surface layer from the colder water below, preventing the storm's access to cooling water. When fresh water dumps into the salty ocean, it makes the surface layer less salty, creating the barrier layer below it. When a passing storm causes the surface layer to pull up water from below, the water comes from the barrier layer rather than the much colder water beneath.

The team supported their observational analysis with a computer model, comparing tropical cyclones over regions with and without barrier layers. The model found a similar decrease in cooling by the barrier layer storms, more heat transferred from the ocean to the storm, and a similar intensification.

This work addressed what happens to hurricanes now, under current climate conditions. Scientists predict that global warming will have an effect on the ocean water cycle. Future research could explore how the distribution of the barrier layers changes in a warmer world.

This work was supported by the Department of Energy Office of Science, the U.S. National Science Foundation, the National Science Foundation of China, the Chinese National Basic Research Program and the Chinese Ministry of Education.

Reference: K. Balaguru, P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li and J.-S. Hsieh, Effect of Ocean Barrier Layers on Tropical Cyclone Intensification, Proc Natl Acad Sci U S A, Early Edition online the week of August 13, 2012. DOI: 10.1073/pnas.1201364109 (http://www.pnas.org/content/early/recent)

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,700 staff, has an annual budget of nearly $1.1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | Newswise Science News
Further information:
http://www.pnas.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>