Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

French, American team finds regolith of small asteroids formed by thermal fatigue

03.04.2014

The centimeter-sized fragments and smaller particles that make up the regolith — the layer of loose, unconsolidated rock and dust — of small asteroids is formed by temperature cycling that breaks down rock in a process called thermal fatigue, according to a paper published today in the Nature Advance Online Publication.

Previous studies suggested that the regolith of asteroids one kilometer wide and smaller was made from material falling to the surface after impacts and from boulders that were pulverized by micrometeoroid impacts.

Recent laboratory experiments and impact modeling conducted by a team of researchers from Observatoire de la Côte d'Azur, Hopkins Extreme Materials Institute at Johns Hopkins University, Institut Supérieur de l'Aéronautique et de l'Espace and Southwest Research Institute (SwRI) have shown that the debris from large impacts reaches escape velocities and breaks free from the gravitational pull of these asteroids, indicating this mechanism is not the dominant process for regolith creation.

The team's research showed that thermal fragmentation, which is induced by mechanical stresses caused by temperature variations of the rapidly spinning asteroid's short night and day, to be the process primarily responsible for breaking up rocks larger than a few centimeters on asteroids.

"We took meteorites as the best analog of asteroid surface materials that we have on the Earth," said Dr. Marco Delbo of the Observatoire de la Côte d'Azur. "We then submitted these meteorites to temperature cycles similar to those that rocks experience on the surfaces of near-Earth asteroids and we found that microcracks grow inside these meteorites quickly enough to entirely break them on timescales much shorter than the typical lifetime of asteroids."

Model extrapolation of these experiments also showed that thermal fragmentation caused rocks to break down an order of magnitude faster than from micrometeoroid impacts, particularly at distances of 1 astronomical unit (about 93 million miles) with the speed of breakdown slowing at distances further from the Sun.

"Even asteroids significantly farther from the Sun showed thermal fatigue fragmentation to be a more relevant process for rock breakup than micrometeoroid impacts," said Dr. Simone Marchi, a scientist in the SwRI Space Science and Engineering Division.

The results of this study suggest that thermal fragmentation, combined with solar radiation pressures that sweep away surface particles, could completely erode small asteroids at distances closer to the Sun (about 28 million miles) in about 2 million years.

###

The French Agence National de la Recherche SHOCKS, BQR of the Observatoire de la Côte d'Azur, the University of Nice-Sophia Antipolis, the Laboratory GeoZur, the French National Program of Planetology, and NASA's Solar System Exploration Research Virtual Institute funded this research.

The paper "Thermal Fatigue as the Origin of Regolith on Small Asteroids," by Marco Delbo, Guy Libourel, Justin Wilkerson, Naomi Murdoch, Patrick Michel, K.T. Ramesh, Clement Ganino, Chrystele Verati, and Simone Marchi, (doi: 10.1038/nature13153) will be published in the April 10 print issue of Nature.

Maria Martinez Stothoff | EurekAlert!
Further information:
http://www.swri.org

Further reports about: Observatoire Planetology Sun asteroids fragmentation materials meteorites temperature

More articles from Earth Sciences:

nachricht Expanding tropics pushing high altitude clouds towards poles, NASA study finds
06.05.2016 | NASA/Goddard Space Flight Center

nachricht Underground fungi detected from space
04.05.2016 | Smithsonian Tropical Research Institute

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>