Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fracking requires a minimum distance of at least 0.6 kilometers from sensitive rock strata

25.04.2012
The chances of rogue fractures due to shale gas fracking operations extending beyond 0.6 kilometres from the injection source is a fraction of one percent, according to new research led by Durham University.

The analysis is based on data from thousands of fracking operations in the USA and natural rock fractures in Europe and Africa.

It is believed to be the first analysis of its type and could be used across the world as a starting point for setting a minimum distance between the depth of fracking and shallower aquifers used for drinking water.

The new study, published in the journal Marine and Petroleum Geology, shows the probabilities of 'rogue' fractures, induced in fracking operations for shale gas extraction, extending beyond 0.6 kilometres from the injection source is exceptionally low. The probability of fractures extending beyond 350 metres was found to be one per cent.

During fracking operations, fractures are created by drilling and injecting fluid into the rock strata underground to increase oil and gas production from fine-grained, low permeability rocks such as shale. These stimulated fractures can significantly increase the rate of production of oil and gas from such rocks.

Fracking operations in the USA are growing in number and many countries across the world are looking at shale gas as a potential energy resource. The process of fracking has come under increasing scrutiny. A recent test well in the UK near Blackpool, Lancashire, was stopped after some minor earthquakes were felt at the surface. The UK government is allowing the test fracking to resume but critics have also warned of other possible side-effects including the contamination of groundwater.

Researchers from Durham University, Cardiff University and the University of Tromsø looked at thousands of natural and induced fractures from the US, Europe and Africa. Of the thousands artificially induced, none were found to exceed 600 metres, with the vast majority being much less than 250 metres in vertical extent.

Fracture heights are important as fractures have been cited as possible underground pathways for deep sources of methane to contaminate drinking water. But the likelihood of contamination of drinking water in aquifers due to fractures when there is a separation of more than a kilometre is negligible, the scientists say.

Professor Richard Davies, Director of Durham Energy Institute, Durham University, said: "Based on our observations, we believe that it may be prudent to adopt a minimum vertical separation distance for stimulated fracturing in shale reservoirs. Such a distance should be set by regulators; our study shows that for new exploration areas where there is no existing data, it should be significantly in excess of 0.6 km.

"Shale gas exploration is increasing across the world and sediments of different ages are now potential drilling targets. Constraining the maximum vertical extent of hydraulic fractures is important for the safe exploitation of unconventional hydrocarbons such as shale gas and oil, and the data from the USA helps us to understand how fracturing works in practice.

"Minimum vertical separation distances for fracturing operations would help prevent unintentional penetration of shallow rock strata."

Professor Davies' team looked at published and unpublished datasets for both natural and stimulated fracture systems in sediment of various ages, from eight different locations in the USA, Europe and Africa.

Professor Richard Davies said: "Sediments of different types and ages are potential future drilling targets and minimum separation depths are an important step towards safer fracturing operations worldwide and tapping into what could be a valuable energy resource.

"We need to keep collecting new data to monitor how far fractures grow in different geological settings."

The team accepts that predicting the height and behaviour of fractures is difficult. They now hope that the oil and gas industry will continue to provide data from new sites across the globe as it becomes available to further refine the probability analysis.

Analysis of new sites should allow a safe separation distance between fracking operations and sensitive rock layers to be further refined, the scientists say. In the meantime, the researchers hope that governments and shale gas drilling companies will use the analysis when planning new operations.

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>