Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil Snake from India Fed on Hatchling Dinosaurs

02.03.2010
The remains of an extraordinary fossil unearthed in 67-million-year-old sediments from Gujarat, western India provide a rare glimpse at an unusual feeding behavior in ancient snakes.

An international paleontological team led by the University of Michigan's Jeff Wilson and the Geological Survey of India's Dhananjay Mohabey will publish their discovery online March 2 in the open-access journal PLoS Biology.

The remains of a nearly complete snake were found preserved in the nest of a sauropod dinosaur, adults of which are the largest animals known to have walked the earth. The snake was coiled around a recently hatched egg adjacent to a hatchling sauropod. Remains of other snake individuals associated with egg clutches at the same site indicate that the newly described snake made its living feeding on young dinosaurs.

"It was such a thrill to discover such a portentous moment frozen in time," said Mohabey, who made the initial discovery in the early 1980s.

Working with the sediment-covered and inscrutable specimen in 1987, Mohabey recognized dinosaur eggshell and limb bones but was unable to fully interpret the specimen. In 2001, Wilson visited Mohabey at his office at the Geological Survey of India and was astonished when he examined the specimen.

"I saw the characteristic vertebral locking mechanism of snakes alongside dinosaur eggshell and larger bones, and I knew it was an extraordinary specimen---but I also knew we needed to develop it further," Wilson said.

From that point began a decade-long odyssey that led to a formal agreement with the Government of India Ministry of Mines in 2004 that allowed preparation and study of the fossil at the U-M Museum of Paleontology, weeks of museum study in India, and field reconnaissance at the original locality in Gujarat by a team that included Wilson, Mohabey, snake expert Jason Head of the University of Toronto-Mississaugua, and geologist Shanan Peters of the University of Wisconsin. The field research was funded by the National Geographic Society.

Preparation of the fossil at the U-M revealed the snake was coiled around a crushed dinosaur egg next to a freshly hatched sauropod dinosaur.

"We think that the hatchling had just exited its egg, and that activity attracted the snake," said Mohabey. "The eggs were lain in the loose sands near a small drainage and covered by a thin layer of sediment."

The arrangement of the bones and delicate structures, such as eggshells and the snake's skull, point to quick entombment.

"Sedimentation was unusually rapid and deep for this formation---a pulse of sand, probably mobilized during a storm, resulted in the preservation of this spectacular association," said Peters, who interpreted the paleoenvironment of the site.

The new snake, which was named Sanajeh indicus or "ancient-gaped one from the Indian subcontinent," because of its lizard-like gape, adds critical information that helps resolve the early diversification of snakes. Modern large-mouthed snakes are able to eat large prey because they have mobile skulls and wide gapes. Sanajeh bears only some of the traits of modern large-mouthed snakes and provides insight into how they evolved.

"Sanajeh was capable of ingesting the half meter-long sauropod hatchling because it was quite large itself, almost 3.5 meters long," Head said. "This points to an interesting evolutionary strategy for primitive snakes to eat large prey by increasing their body size."

Although the sauropod dinosaurs that Sanajeh preyed upon include the largest animals capable of walking on land, they began their life as small hatchlings that were about one-seventh the length of Sanajeh. Sauropods appear to have achieved their enormous size by virtue of a fast-growth phase, which would have kept them out of danger from Sanajeh-sized predators by the end of their first year of life.

This discovery of Sanajeh adds to a growing body of evidence suggesting that the Indian subcontinent retained ties to southern landmasses for longer than once hypothesized. Sanajeh's closest relatives are from Australia and speak to its strong ties to southern continents, collectively known as Gondwana.

A life-sized flesh reconstruction of the scene immediately before burial was designed and executed by University of Chicago paleoartist Tyler Keillor. The team will donate the first cast to the Geological Survey of India at a formal function to be held in Mumbai, India, on March 12, 2010.

More information:
Jeff Wilson: http://www-personal.umich.edu/~wilsonja/JAW/Home.html
University of Michigan Museum of Paleontology: www.paleontology.lsa.umich.edu
Geological Survey of India: www.portal.gsi.gov.in (e-mail: d.mohabey@gsi.gov.in)
National Geographic Society: www.nationalgeographic.com

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>