Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil and molecular evidence reveals the history of major marine biodiversity hotspots

07.08.2008
- International experts have described three major marine biodiversity hotspots in the last 50 million years, from the oldest, peaked in southwest Europe and northwest Africa, to the the modern Indo-Australian Archipelago hotspot.
- The birth, evolution and death of such hotspots are a product of ecological processes operating over geological time scales of millions of years.

- To what extent is human activity speeding the evolutionary process of the focus with the highest level of biological diversity, the coral reef ecosystems?

The journal Science has published in the issue of the 1st of August the results of a detailed research work about the evolution of marine diversity all through the last 50 million years. The study has been carried out with the participation of scientists from Australia, Spain, USA, UK, Holland, Malaysia and Panama.

The results obtained prove that the main concentrations of biodiversity have been located in the last 50 million years in a line, from west to east, from southwest Europe and northwest Africa to the Indo-Australian Archipelago, and along the eastern shore of the Arabian Peninsula, Pakistan, and West India.
The researchers, among which is the Professor of the University of Granada (Spain) Juan Carlos Braga, have based this work on the study of the combination of molecular evidence and the fossil record.

At present, the Indo-Australian Archipelago (IAA) is the tropical center of maximum diversity since the Miocene and in the last 20 million years, as the record of large benthic foraminifera, mangrove pollen types, gastropods, and corals has shown.

The research proves the amazing antiquity of the IAA focus, which provides a new understanding of biodiversity hotspots, product of ecological processes operating over geological time scales of millions of years with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns..

Vulnerability of coral reef ecosystems

A synthesis of the paleontological and molecular data, interpreted in an ecological context, has enabled the scientists to understand the true antiquity of hotspots and their component species. However, future studies are clearly needed as global threats to marine biodiversity put the spotlight on the vulnerability of coral reef ecosystems.

We now realize that human-induced changes are operating on time scales far removed from those that have created these hotspots. An improved understanding of the nature of biodiversity hotspots, be they terrestrial or marine, will require a clearer understanding of the Geographic and environmental context of taxonomic turnover driving the origination, maintenance, and diminution of hotspots over extensive time scales.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Earth Sciences:

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>