Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil is best look yet at an ancestor of buttercups

01.04.2011
Scientists from the United States and China have discovered the first intact fossil of a mature eudicot, a type of flowering plant whose membership includes buttercups, apple trees, maple trees, dandelions and proteas. The 125 million-year-old find, described in this week's Nature, reveals a remarkably developed species, leading the scientists to argue for an earlier origin of the eudicots -- and perhaps flowering plants in general.

"This fossil opens up a new way of thinking about the evolution of some of the first flowering plants," said Indiana University Bloomington biologist David Dilcher, the Nature paper's American coauthor. "We are also beginning to understand that the explosive radiation of all flowering plants about 111 million years ago has had a long history that began with the slower diversification of many families of eudicots over 10, perhaps 15 million years earlier."


This 125 million-year-old fossil of a eudicot is the earliest, most complete to date. It was named Leefructus mirus by a group of scientists that includes IU Bloomington biologist David Dilcher. Credit: Zhiduan Chen

An image of the fossil was selected as Nature's cover.

Dilcher and his Chinese colleagues Ge Sun and Hongshan Wang (Shenyang Normal University) and Zhiduan Chen (Chinese Academy of Sciences) named the fossilized plant Leefructus mirus in honor of Li Shiming, a non-scientist who donated the fossil to Ge Sun's new museum of paleontology in Liaoning Province, China. Ge Sun was the project's principal investigator.

The fossil shows the above-ground portion of a mature plant. A single stem leads to five leaves, and one leads to a fully developed flower. The entire fossil is about 16 cm (6.3 in) tall. Leaves are innervated by branching veins, and the small, cup-shaped flower has five petals.

"I think Leefructus had attractive flowers to advertise for pollinators to visit," said Dilcher, when asked to speculate. "There were no bees at this time, so I think that flies, beetles or extinct types of moths or scorpion flies may have been involved in its pollination. Leefructus was found in the volcanic ash beds of an ancient lake. I think it was living near a lake, perhaps in a wet or marshy area much as buttercups do today."

The scientists' analysis of the plant's form leads them to believe Leefructus should be placed among the Ranunculaceae, an old family of eudicots that includes buttercups and crowroot plants.

"When we look at the branching relationships of the tree for this group, the Ranunculaceae is at the end of several branches going to the other families, such as the poppies," Dilcher said. "As a result, we believe that prior to 122 to 124 million years ago, several families of flowering plants had already begun to diverge. How much older the eudicots are we do not know yet, but this fossil suggests their origin certainly goes further back in the Cretaceous, perhaps even into the Jurassic."

The profusion of flowering plant species in the second half of the Mesozoic Era, the age of dinosaurs, eventually led to flowers' domination of other types of plants in all but Earth's harshest climates. Evolutionary biologists believe the diversification of flowering plants also supported the radiation of a wide range of animal species, particularly pollinators and seed eaters, from beetles and bees to hummingbirds and bats.

Until now, most fossil information about the earliest eudicots has come from fossilized pollen, the plant equivalent of sperm. Despite pollen's small size, pollen grains have provided crucial information to paleontologists. But pollen can only tell scientists so much.

"What we know about the earliest eudicots comes from a few pollen records off the coast of West Africa and the lower Cretaceous sediments in southern England about 127 million years before present," Dilcher said. "We can learn a lot from pollen, but the Leefructus fossil shows us that there is no substitute for a megafossil record if we are to understand the evolution of early flowering plants."

The age of the Leefructus fossil was determined by analyzing the ages of surrounding rock via Argon 40/39 and Uranium-Lead dating methods.

This research was supported by grants from the Chinese Ministry of Education, the "111" Project, China's National Natural Science Foundation, and Shenyang Normal University.

To speak with Dilcher, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>