Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forming fogbows: Study finds limit on evaporation to ice sheets, but that may change

02.05.2016

Although the coastal regions of the Greenland Ice Sheet are experiencing rapid melting, a significant portion of the interior of that ice sheet has remained stable - but a new study suggests that stability may not continue.

Researchers found that very little of the snow and ice on the vast interior of the ice sheet is lost to the atmosphere through evaporation because of a strong thermal "lid" that essentially traps the moisture and returns it to the surface where it refreezes.


David Noone in a snow pit that reveals layers of snow that pile up one after another as different snow storms pass Summit Station, Greenland. Dark and light layering gives evidence of evaporation and refreezing of water vapor.

Credit: Oregon State University

However, there are signs that this lid is becoming leaky as global temperatures increase. The researchers say there may be a threshold at which warming becomes sufficient to turn on a switch that will destabilize the snow surface.

Results of the study, which was funded by the National Science Foundation, are being published in Science Advances. New measurements from a research tower atop the Greenland ice sheet helped uncovered the mystery of how much snow piles up on this ice sheet.

"Normally, the air temperature goes down as you climb, but near the surface in Greenland, it gets warmer," said David Noone, an Oregon State University professor who is an atmospheric scientist and principal investigator on the study. "The surface is very cold, but it can be as much as 20 degrees warmer just 30 to 40 feet up in the air. It's enough that you can feel the difference between your nose and your toes."

"The temperature difference effectively forms a lid so that there is hardly any evaporation. Warm air likes to rise, but if it is already warmer up above the air is trapped nearer the ground. One consequence is that layers of fog form from water that had recently evaporated. Eventually the small fog water-drops drift back down to the very cold surface where it refreezes onto the ice sheet."

"It's a handy little trick of nature."

Max Berkelhammer, a researcher at the University of Illinois and lead author on the study, said scientists have been aware of "accumulation zones" in high-altitude areas of the ice sheet, but they haven't been comprehensively measured because of the difficulty in analyzing evaporation and condensation over time.

"Instruments capable of doing this are pretty new and while they have been used before on the ice sheet, they have never been able to run during an entire winter," said Berkelhammer, who did his post-doctoral work with Noone when both were at the University of Colorado. "I think at this point we are still the only group who has been able to run this type of instrument for an entire year on top of an ice sheet."

The research aims to better understand how ice cores capture information about past temperatures in Greenland. The snow and ice on Greenland's interior originated from ocean water far to the south and is transported northward by weather systems and storms, and finally falls as snow on the pristine ice sheet.

The researchers are able to track the origins and fate of the water by the ratio of oxygen and hydrogen isotopes in the water.

Variations in the isotope ratios in layers of snow piled up on the ice sheet provide the team a history of Green climate that helps put recent warming into historical context, the researchers say.

To understand past climate, scientists must know how much precipitation fell and how much evaporated. Without the team's analysis, what fraction of falling snow accumulates and what fraction evaporates was difficult to determine. When they began to explore evaporation rates, they discovered this unique thermal lid, which effectively "recycles" water back onto the Greenland Ice Sheet.

This finding will allow previous estimates of Greenland's past water balance to be re-evaluated.

"When thinking about climate change, one often thinks about rising global temperatures," Noone said. "However in Greenland, as like here in Oregon, climate change is also a story of the changing water cycle and how we lose water because evaporation rates are increasing.

"Climate models suggest that as temperatures increase, more precipitation may actually fall in Greenland because warmer air can hold more water. Taken by itself, that could indicate that parts of the ice sheet may grow. However, if the lid becomes increasingly leaky, the evaporation process has become more effective and moisture will escape to the atmosphere.

"The fate of the ice sheet is in the balance," Noone said. "It becomes a question of which influence is stronger."

Media Contact

David Noone
dcn@coas.oregonstate.edu
541-737-3629

 @oregonstatenews

http://www.orst.edu 

David Noone | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>