Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest carbon monitoring breakthrough in Colombia

26.07.2012
Using new, highly efficient techniques, Carnegie and Colombian scientists have developed accurate high-resolution maps of the carbon stocks locked in tropical vegetation for 40% of the Colombian Amazon (165,000 square kilometers/64,000 square miles), an area about four times the size of Switzerland.

Until now, the inability to accurately quantify carbon stocks at high spatial resolution over large areas has hindered the United Nations' Reducing Emissions from Deforestation and Forest Degradation (REDD+) program, which is aimed at creating financial value for storing carbon in the forests of tropical countries. In addition to providing a key boost for implementing REDD+, the results from the Carnegie/Colombian partnership is a boon to tropical forest management and conservation.

Colombian President Juan Manuel Santos Calderón remarked: "I am delighted to see these research results of the Carnegie Institution and our counterpart institutions working in the Colombian Amazon. We celebrate a true collaboration that not only advances science and human knowledge, but also builds our national scientific capacity. In a continuing partnership with Carnegie we aim at becoming world leaders in the use of state-of-the-art science and technology for environmental monitoring that can inform our decision making and planning efforts for managing and protecting our precious natural resources."

Many approaches have been pursued for estimating tropical forest carbon stores at different scales, but the estimates are usually too coarse for conserving, managing and reporting forest carbon changes at high spatial resolution. The vastly improved method presented here involves a rapid and cost-effective combination of airborne Light Detection and Ranging technology (LiDAR) and a satellite image analysis technology called CLASlite to produce carbon maps.

LiDAR, mounted on the fixed-wing Carnegie Airborne Observatory (CAO), provides detailed 3-D images of the forest canopy using laser pulses. CLASlite converts dense tropical forest cover found in basic satellite images into highly detailed maps that reveal deforestation, logging, and other forest degradation.

Both the CAO and CLASlite were developed by lead author Greg Asner and his team at Carnegie's Department of Global Ecology, and this project represents the first use of the combined technologies in deep partnership with Colombian government agencies. Their new methods use a "top down" approach that dramatically reduces the need for expensive and time-consuming field data. The study, published in Biogeosciences, is also the first to use what Asner calls a universal airborne LiDAR approach that nearly eliminates the need for traditional plot inventories.

"This new study not only explores a poorly understood region of the Amazon, it also demonstrates our newest method for mapping forest carbon stocks at a spatial resolution approaching the size of the larger individual rainforest trees," (30 meters x 30 meters, 100 feet x 100 feet) remarked Asner. "With a revised, top-down methodology that combines the best available technologies, we and our partners achieved new accuracies that radically advance forest monitoring and carbon policy readiness in Colombia."

Despite the fact that the area is relatively flat, the scientists discovered that slight variations in elevation and natural drainage systems were important determinants of regional variation of carbon stocks. In total, they found that the study area had about 1.5 billion metric tons of carbon stored in the tissues of rainforest plants.

The 165,000-square-kilometer Colombian study area was designated as a REDD+ pilot project area by the Colombian Institute for Hydrological, Meteorological, and Environmental Studies (IDEAM). The region is vast, with varied terrain, and is largely inaccessible due to a lack of roads or navigable rivers. Inaccessibility issues prevent widespread field work. The scientific partnership between Carnegie and Colombia was essential to the success of mapping such a challenging area.

IDEAM reported that during the last two decades, Colombia has lost about 300,000 hectares (740,000 acres) of forest, creating a need to strengthen methods for tracking and control of deforestation, particularly in areas that are difficult to access.

"This joint work has permitted IDEAM to complement the information base it has created on deforestation and forest carbon densities as well as to strengthen national capacities for applying the latest technology for environmental management in the country," said Ricardo José Lozano, the General Director of IDEAM.

Joint efforts by Carnegie and Colombian government organizations, including the High Presidential Council on Biodiversity and Environmental Management and IDEAM, realized important advances in Colombian capacity to map forest carbon with cutting-edge technologies. With support from the Colombian Air Force, the Agustin Codazzi Geographic Institute, the Puerto Rastrojo Foundation, and the Ministry of Environment, the team carried out the project by overcoming complicated data acquisition conditions.

"Collaborative effort through all stages of scientific planning, operations, and analysis ensured success among project objectives," noted John Clark, a Latin American project coordinator at Carnegie. "Through knowledge sharing, technology transfer, and inter-institutional coordination, we jointly improved an approach for high resolution forest carbon mapping that can be applied anywhere in the world."

The scientists are now planning for additional airborne and satellite mapping to address the challenges of climate change in Colombia and the western Amazon basin.

This study was supported by the Gordon and Betty Moore Foundation. The Carnegie Airborne Observatory is made possible by the Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, the John D. and Catherine T. MacArthur Foundation, the W.M. Keck Foundation, and William Hearst III.

The Department of Global Ecology was established in 2002 to help build the scientific foundations for a sustainable future. The department is located on the campus of Stanford University, but is an independent research organization funded by the Carnegie Institution. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Carnegie Institution for Science (carnegieScience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Greg Asner | EurekAlert!
Further information:
http://www.carnegieScience.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>