Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flow rates, fates of Gulf spill contaminants assessed from the air

15.03.2011
Scientists have found a way to use air chemistry measurements taken hundreds of feet above last year's BP Deepwater Horizon oil spill to estimate how fast gases and oil were leaking from the reservoir thousands of meters underwater.

The researchers also determined the fate of most of those gas and oil compounds using atmospheric chemistry data collected from aircraft last June. They say their new methods could be applied to future oil spills, whether in shallow or deep water.

The new analysis has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

"We present a new method for understanding the fate of most of the spilled gases and oil," says Tom Ryerson, lead author of the report, from NOAA's Earth System Research Laboratory in Boulder, Colo.

"We found that the spilled gases and oil (spilled fluid) obeyed a simple
rule: whether a compound can dissolve or evaporate determines where it goes in the marine environment. That simple rule, and the methods we lay out in this paper, could enable airborne evaluation of the magnitude of future spills."

Knowing where the spilled gas and oil mixture ended up could also help resource managers and others trying to understand environmental exposure levels.

Using the atmospheric measurements and information about the chemical makeup of the leaking reservoir fluid, Ryerson and his colleagues calculate that at least 32,600 to 47,700 barrels of liquid gases and oil poured out of the breached reservoir on June 10, 2010.

This range, determined independently of previous estimates, presents a lower limit.

"Although we accounted for gases that dissolved before reaching the surface, our atmospheric data are essentially blind to gases and oil that remain trapped deep underwater," Ryerson says. Comparison of the new result with official estimates is not possible because this airborne study could not measure that trapped material.

Not including that trapped material, atmospheric measurements combined with reservoir composition information show that about one- third (by mass) of the oil and gas dissolved into the water column on its way to the surface. The team found another 14 percent by mass, or about 258 metric tons per day (570,000 lbs, per day), was lost quickly to the atmosphere within a few hours after surfacing, and an additional 10 percent was lost to the atmosphere over the course of the next 24 to

48 hours.

Among the study's other key findings:

* Some compounds evaporated essentially completely
to the atmosphere, which allowed scientists to make
an estimate of flow rate based solely on atmospheric
measurements and reservoir composition
information.
* Airborne instruments picked up no enhanced levels
of methane, the lightest-weight hydrocarbon in the
leaking reservoir fluid, showing that it dissolved
essentially completely in the water column.
* Benzene -- a known human carcinogen -- and
ethane were found in only slightly elevated
concentrations in the air, meaning they dissolved
nearly completely in the water.
* A number of slightly heavier carbon compounds
ended up in both the air and water, with the precise
fraction depending on the compound. Based on
these data, the team inferred different exposure
risks of mid- and shallow-water marine species to
elevated levels of potentially toxic compounds.
A portion of oil and gas was "recovered" by response activities and piped from the leaking wellhead to the Discoverer Enterprise drill ship on the ocean surface. The research team calculated this recovered fraction by measuring emissions from natural gas flaring aboard the recovery ship. They calculate a recovery rate of 17,400 barrels of reservoir fluid (liquid gas and oil) for June 10, and which accounts for approximately one-third to one-half of the group's total estimate of 32,600 to 47,700 barrels of fluid per day.

Ryerson and his colleagues conclude that the technique they developed could be applied to future oil spills, in shallow or deep water. The research flights, conducted at a minimum of 60 meters altitude (200 feet) above the Gulf surface, were possible because a NOAA WP-3D research aircraft had already been outfitted with sensitive chemistry equipment for deployment to California for an air quality and climate study and was redeployed to the Gulf.

Title:
"Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate"
Authors:
Thomas B. Ryerson, Charles A. Brock, Ru-Shan Gao, David W.
Fahey, Ann M. Middlebrook, Daniel M. Murphy, A.R. Ravishankara, James M. Roberts, and David D. Parrish: Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA;
Kenneth C. Aikin, Wayne M. Angevine, Fred C. Fehsenfeld, Joost A.
de Gouw, John S. Holloway, Daniel A. Lack, J. Andy Neuman, John B. Nowak, Jeff Peischl, Anne E. Perring, Illana B. Pollack, Joshua P.

Schwarz, J. Ryan Spackman, Harald Stark, Carsten Warneke, and Laurel A. Watts: Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA;

Elliot L. Atlas: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA;

Donald R. Blake and Simone Meinardi: Department of Chemistry, University of California, Irvine, California, USA;

Richard A. Lueb: Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA.

Contact information for authors:
Thomas B. Ryerson, NOAA Earth System Research Laboratory, Chemical Sciences Division, +1 (303) 497-7531, Thomas.B.Ryerson@noaa.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>