Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flow rates, fates of Gulf spill contaminants assessed from the air

15.03.2011
Scientists have found a way to use air chemistry measurements taken hundreds of feet above last year's BP Deepwater Horizon oil spill to estimate how fast gases and oil were leaking from the reservoir thousands of meters underwater.

The researchers also determined the fate of most of those gas and oil compounds using atmospheric chemistry data collected from aircraft last June. They say their new methods could be applied to future oil spills, whether in shallow or deep water.

The new analysis has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

"We present a new method for understanding the fate of most of the spilled gases and oil," says Tom Ryerson, lead author of the report, from NOAA's Earth System Research Laboratory in Boulder, Colo.

"We found that the spilled gases and oil (spilled fluid) obeyed a simple
rule: whether a compound can dissolve or evaporate determines where it goes in the marine environment. That simple rule, and the methods we lay out in this paper, could enable airborne evaluation of the magnitude of future spills."

Knowing where the spilled gas and oil mixture ended up could also help resource managers and others trying to understand environmental exposure levels.

Using the atmospheric measurements and information about the chemical makeup of the leaking reservoir fluid, Ryerson and his colleagues calculate that at least 32,600 to 47,700 barrels of liquid gases and oil poured out of the breached reservoir on June 10, 2010.

This range, determined independently of previous estimates, presents a lower limit.

"Although we accounted for gases that dissolved before reaching the surface, our atmospheric data are essentially blind to gases and oil that remain trapped deep underwater," Ryerson says. Comparison of the new result with official estimates is not possible because this airborne study could not measure that trapped material.

Not including that trapped material, atmospheric measurements combined with reservoir composition information show that about one- third (by mass) of the oil and gas dissolved into the water column on its way to the surface. The team found another 14 percent by mass, or about 258 metric tons per day (570,000 lbs, per day), was lost quickly to the atmosphere within a few hours after surfacing, and an additional 10 percent was lost to the atmosphere over the course of the next 24 to

48 hours.

Among the study's other key findings:

* Some compounds evaporated essentially completely
to the atmosphere, which allowed scientists to make
an estimate of flow rate based solely on atmospheric
measurements and reservoir composition
information.
* Airborne instruments picked up no enhanced levels
of methane, the lightest-weight hydrocarbon in the
leaking reservoir fluid, showing that it dissolved
essentially completely in the water column.
* Benzene -- a known human carcinogen -- and
ethane were found in only slightly elevated
concentrations in the air, meaning they dissolved
nearly completely in the water.
* A number of slightly heavier carbon compounds
ended up in both the air and water, with the precise
fraction depending on the compound. Based on
these data, the team inferred different exposure
risks of mid- and shallow-water marine species to
elevated levels of potentially toxic compounds.
A portion of oil and gas was "recovered" by response activities and piped from the leaking wellhead to the Discoverer Enterprise drill ship on the ocean surface. The research team calculated this recovered fraction by measuring emissions from natural gas flaring aboard the recovery ship. They calculate a recovery rate of 17,400 barrels of reservoir fluid (liquid gas and oil) for June 10, and which accounts for approximately one-third to one-half of the group's total estimate of 32,600 to 47,700 barrels of fluid per day.

Ryerson and his colleagues conclude that the technique they developed could be applied to future oil spills, in shallow or deep water. The research flights, conducted at a minimum of 60 meters altitude (200 feet) above the Gulf surface, were possible because a NOAA WP-3D research aircraft had already been outfitted with sensitive chemistry equipment for deployment to California for an air quality and climate study and was redeployed to the Gulf.

Title:
"Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate"
Authors:
Thomas B. Ryerson, Charles A. Brock, Ru-Shan Gao, David W.
Fahey, Ann M. Middlebrook, Daniel M. Murphy, A.R. Ravishankara, James M. Roberts, and David D. Parrish: Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA;
Kenneth C. Aikin, Wayne M. Angevine, Fred C. Fehsenfeld, Joost A.
de Gouw, John S. Holloway, Daniel A. Lack, J. Andy Neuman, John B. Nowak, Jeff Peischl, Anne E. Perring, Illana B. Pollack, Joshua P.

Schwarz, J. Ryan Spackman, Harald Stark, Carsten Warneke, and Laurel A. Watts: Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA;

Elliot L. Atlas: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA;

Donald R. Blake and Simone Meinardi: Department of Chemistry, University of California, Irvine, California, USA;

Richard A. Lueb: Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA.

Contact information for authors:
Thomas B. Ryerson, NOAA Earth System Research Laboratory, Chemical Sciences Division, +1 (303) 497-7531, Thomas.B.Ryerson@noaa.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>