Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fledgling mantle plume may be cause of African volcano's unique lava

16.03.2009
Nyiragongo, an active African volcano, possesses lava unlike any other in the world, which may point toward its source being a new mantle plume says a University of Rochester geochemist.

The lava composition indicates that a mantle plume—an upwelling of intense heat from near the core of the Earth—may be bubbling to life beneath the soil of the Democratic Republic of the Congo. The findings are presented in the current issue of the journal Chemical Geology.

"This is the most fluid lava anyone has seen in the world," says Asish Basu, professor of earth science at the University of Rochester. "It's unlike anything coming out of any other volcano. We believe we're seeing the beginning of a plume that is pushing up the entire area and contributing to volcanism and earthquakes."

Basu analyzed the lava, which resides in the world's largest lava lake—more than 600 feet wide inside the summit of Nyiragongo—and found that the isotopic compositions of neodymium and strontium are identical to ancient asteroids. This suggests, says Basu, that the lava is coming from a place deep inside the Earth where the source of molten rock is in its pristine condition.

Because the Earth's crust is undergoing constant change via tectonic motion, weathering, and resurfacing, its chemical composition has been dramatically altered over its 4-billion-year lifespan, but the Nyiragongo magma source in the deep mantle has not, says Basu. That magma source is thought to retain some of the solar system's original make-up of elements, and this is what Basu and his colleagues believe they have detected in Nyiragongo's lava lake.

Scientists believe mantle plumes can last hundreds of millions of years, and that their heat can create phenomena such as Yellowstone National Park or the string of Hawaiian Islands. Basu says Nyiragongo's frequent eruptions may be the birthing pains of a similar plume and the possible beginning of new large-scale geological formations in the region.

Basu says other well known features of the region also point toward the idea of a growing plume. Nyiragongo lies on a vast ring of volcanoes and fissures that wrap around Uganda and the United Republic of Tanzania, and inside this ring the land is domed upward more than a mile above sea level. Basu believes the head of the plume is pooling in this region, pushing it upward like a 500-mile-wide air bubble in a pie crust.

But it is Nyiragongo, says Basu, that is being fed directly from the plume. Another volcano, Nyamuragira, just 15 miles to the north of Nyiragongo displays much more conventional lava compositions. Basu says this is because Nyamuragira is being fed from the edge of where the plume's head is pooling, mixing in elements of melted crust and upper mantle, whereas Nyiragongo is being fed directly from the plume's main body. Together the two mountains are responsible for approximately 40 percent of all of Africa's volcanic eruptions.

"This is a very troubled region of the world, and we hope to be able to help better understand the conditions under which the people of that area must live," says Basu. Nyiragongo last erupted in 2002, sending its super-fluid lava down its slopes at more than 60 miles per hour toward the nearby town of Goma, destroying 4,500 buildings and leaving 120,000 homeless. Basu and other scientists hope that understanding the composition of the lava that feeds Nyiragongo may help ongoing worldwide scientific efforts to understand the hazards of the region.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>