Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fledgling mantle plume may be cause of African volcano's unique lava

16.03.2009
Nyiragongo, an active African volcano, possesses lava unlike any other in the world, which may point toward its source being a new mantle plume says a University of Rochester geochemist.

The lava composition indicates that a mantle plume—an upwelling of intense heat from near the core of the Earth—may be bubbling to life beneath the soil of the Democratic Republic of the Congo. The findings are presented in the current issue of the journal Chemical Geology.

"This is the most fluid lava anyone has seen in the world," says Asish Basu, professor of earth science at the University of Rochester. "It's unlike anything coming out of any other volcano. We believe we're seeing the beginning of a plume that is pushing up the entire area and contributing to volcanism and earthquakes."

Basu analyzed the lava, which resides in the world's largest lava lake—more than 600 feet wide inside the summit of Nyiragongo—and found that the isotopic compositions of neodymium and strontium are identical to ancient asteroids. This suggests, says Basu, that the lava is coming from a place deep inside the Earth where the source of molten rock is in its pristine condition.

Because the Earth's crust is undergoing constant change via tectonic motion, weathering, and resurfacing, its chemical composition has been dramatically altered over its 4-billion-year lifespan, but the Nyiragongo magma source in the deep mantle has not, says Basu. That magma source is thought to retain some of the solar system's original make-up of elements, and this is what Basu and his colleagues believe they have detected in Nyiragongo's lava lake.

Scientists believe mantle plumes can last hundreds of millions of years, and that their heat can create phenomena such as Yellowstone National Park or the string of Hawaiian Islands. Basu says Nyiragongo's frequent eruptions may be the birthing pains of a similar plume and the possible beginning of new large-scale geological formations in the region.

Basu says other well known features of the region also point toward the idea of a growing plume. Nyiragongo lies on a vast ring of volcanoes and fissures that wrap around Uganda and the United Republic of Tanzania, and inside this ring the land is domed upward more than a mile above sea level. Basu believes the head of the plume is pooling in this region, pushing it upward like a 500-mile-wide air bubble in a pie crust.

But it is Nyiragongo, says Basu, that is being fed directly from the plume. Another volcano, Nyamuragira, just 15 miles to the north of Nyiragongo displays much more conventional lava compositions. Basu says this is because Nyamuragira is being fed from the edge of where the plume's head is pooling, mixing in elements of melted crust and upper mantle, whereas Nyiragongo is being fed directly from the plume's main body. Together the two mountains are responsible for approximately 40 percent of all of Africa's volcanic eruptions.

"This is a very troubled region of the world, and we hope to be able to help better understand the conditions under which the people of that area must live," says Basu. Nyiragongo last erupted in 2002, sending its super-fluid lava down its slopes at more than 60 miles per hour toward the nearby town of Goma, destroying 4,500 buildings and leaving 120,000 homeless. Basu and other scientists hope that understanding the composition of the lava that feeds Nyiragongo may help ongoing worldwide scientific efforts to understand the hazards of the region.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Earth Sciences:

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>