Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First Eurasians left Africa up to 130,000 years ago


Press release of the University of Tübingen and Senckenberg Nature Research Society: Models tested by Tübingen paleoanthropologists push back the date of first Homo sapiens migration out of Africa

A team of researchers led by the University of Tübingen’s Professor Katerina Harvati has shown that anatomically modern humans spread from Africa to Asia and Europe in several migratory movements. The first ancestors of today’s non-African peoples probably took a southern route through the Arabian Peninsula as early as 130,000 years ago, the researchers found.

The study is published by Professor Katerina Harvati and her team from the Institute for Archaeological Sciences at the University of Tübingen and the Senckenberg Center for Human Evolution and Palaeoenvironment, in collaboration with colleagues from the University of Ferrara, Italy, and the National Museum of Natural History, France. The study appears in the online Early Edition of the Proceedings of the National Academy of Sciences.

The scientists tested different hypothetical dispersal scenarios, taking into account the geography of potential migration routes, genetic data and cranial comparisons. They found that the first wave of migration out of Africa started earlier than previously thought, taking place as early as the late Middle Pleistocene – with a second dispersal to northern Eurasia following about 50,000 years ago.

Most scientists agree that all humans living today are descended from a common ancestor population which existed 100,000 to 200,000 years ago in Africa. The decreasing genetic and phenotypic diversity observed in humans at increasing distances from Sub-Saharan Africa has often been interpreted as evidence of a single dispersal 50,000 to 75,000 years ago. However, recent genetic, archaeological and palaeoanthropological studies challenge this scenario.

Professor Harvati’s team tested the competing out-of-Africa models of a single dispersal against multiple dispersals of anatomically modern humans. The scientists compared modern human crania from different parts of the world, neutral genetic data, and geographical distances associated with different dispersal routes. Likewise, they reconstructed population split times from both the genetic data and as predicted by each competing model. Because each dispersal scenario is associated with specific geographic and temporal predictions, the researchers were able to test them against the observed neutral biological distances between groups, as revealed from both genetic and cranial data.

“Both lines of evidence – anatomical cranial comparisons as well as genetic data – support a multiple dispersal model,” says Katerina Harvati. The first group of our ancestors left Africa about 130,000 years ago and followed a coastal route through the Arabian Peninsula to Australia and the west Pacific region. “Australian aborigines, Papuans and Melanesians were relatively isolated after the early dispersal along the southern route,” says Hugo Reyes-Centeno, first author of the study and member of the Tübingen team. He adds that other Asian populations appear to be descended from members of a later migratory movement from Africa to northern Eurasia about 50,000 years ago.

The researchers are confident that continued field work and advances in genetics will allow for fine-tuning of models of human expansion out of Africa. So far we can only speculate whether, for example, severe droughts in East Africa occurring between 135,000 and 75,000 years ago prompted migration or had an impact on the local evolution of human populations. The southern route region is a vast geographical space that has been understudied by archaeologists and anthropologists, so future work in this area will help support their findings.

Figures for the media are available at:
University of Tübingen, Public Relations Office, Phone +49 7071 29 77853, janna.eberhardt[at]

Hugo Reyes-Centeno, Silvia Ghirotto, Florent Détroit, Dominique Grimaud-Hervé, Guido Barbujani, Katerina Harvati: Genomic and Cranial Phenotype Data Support Multiple Modern Human Dispersals from Africa and a Southern Route into Asia. Proceedings of the National Academy of Sciences, online Early Edition in the week of April 21, 2014.

Prof. Dr. Katerina Harvati
University of Tübingen – Institute for Archaeological Sciences
Senckenberg Center for Human Evolution and Palaeoenvironment
Phone +49 7071 29-76516

The University of Tübingen

Innovative.Interdisciplinary.International.Since 1477. These have always been the University of Tübingen’s guiding principles in research and teaching. With its long tradition, Tübingen is one of Germany’s most respected universities. Tübingen’s Neuroscience Excellence Cluster, Empirical Education Research Graduate School and institutional strategy are backed by the German government’s Excellence Initiative, making Tübingen one of eleven German universities with the title of excellence. Tübingen is also home to six Collaborative Research Centers, participates in four Transregional Collaborative Research Centers, and hosts six Graduate Schools.

Our core research areas include: integrative neuroscience, clinical imaging, translational immunology and cancer research, microbiology and infection research, biochemistry and pharmaceuticals research, the molecular biology of plants, geo-environment research, astro- and elementary particle physics, quantum physics and nanotechnology, archeology and prehistory, history, religion and culture, language and cognition, media and education research.

The excellence of our research provides optimal conditions for students and academics from all over the world. 28,500 students are currently enrolled at the University of Tübingen. As a comprehensive research University, we offer more than 250 subjects. Our courses combine teaching and research, promoting a deeper understanding of the material while encouraging students to share their own knowledge and ideas. This philosophy gives Tübingen students strength and confidence in their fields and a solid foundation for interdisciplinary research.

Senckenberg Nature Research Society (Senckenberg Gesellschaft für Naturforschung)

To study and understand nature with its limitless diversity of living creatures and to preserve and manage it in a sustainable fashion as the basis of life for future generations – this has been the goal of the Senckenberg Nature Research Society (Senckenberg Gesellschaft für Naturforschung) for almost 200 years. Through its exhibits and museums Senckenberg showcases and shares the current results of its natural history research with the public and offers insights into the past and present changes in nature, their causes and effects.

Additional information is available at

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft

Further reports about: Eurasia Homo sapiens Human Senckenberg dispersal populations

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>