Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Eurasians left Africa up to 130,000 years ago

22.04.2014

Press release of the University of Tübingen and Senckenberg Nature Research Society: Models tested by Tübingen paleoanthropologists push back the date of first Homo sapiens migration out of Africa

A team of researchers led by the University of Tübingen’s Professor Katerina Harvati has shown that anatomically modern humans spread from Africa to Asia and Europe in several migratory movements. The first ancestors of today’s non-African peoples probably took a southern route through the Arabian Peninsula as early as 130,000 years ago, the researchers found.

The study is published by Professor Katerina Harvati and her team from the Institute for Archaeological Sciences at the University of Tübingen and the Senckenberg Center for Human Evolution and Palaeoenvironment, in collaboration with colleagues from the University of Ferrara, Italy, and the National Museum of Natural History, France. The study appears in the online Early Edition of the Proceedings of the National Academy of Sciences.

The scientists tested different hypothetical dispersal scenarios, taking into account the geography of potential migration routes, genetic data and cranial comparisons. They found that the first wave of migration out of Africa started earlier than previously thought, taking place as early as the late Middle Pleistocene – with a second dispersal to northern Eurasia following about 50,000 years ago.

Most scientists agree that all humans living today are descended from a common ancestor population which existed 100,000 to 200,000 years ago in Africa. The decreasing genetic and phenotypic diversity observed in humans at increasing distances from Sub-Saharan Africa has often been interpreted as evidence of a single dispersal 50,000 to 75,000 years ago. However, recent genetic, archaeological and palaeoanthropological studies challenge this scenario.

Professor Harvati’s team tested the competing out-of-Africa models of a single dispersal against multiple dispersals of anatomically modern humans. The scientists compared modern human crania from different parts of the world, neutral genetic data, and geographical distances associated with different dispersal routes. Likewise, they reconstructed population split times from both the genetic data and as predicted by each competing model. Because each dispersal scenario is associated with specific geographic and temporal predictions, the researchers were able to test them against the observed neutral biological distances between groups, as revealed from both genetic and cranial data.

“Both lines of evidence – anatomical cranial comparisons as well as genetic data – support a multiple dispersal model,” says Katerina Harvati. The first group of our ancestors left Africa about 130,000 years ago and followed a coastal route through the Arabian Peninsula to Australia and the west Pacific region. “Australian aborigines, Papuans and Melanesians were relatively isolated after the early dispersal along the southern route,” says Hugo Reyes-Centeno, first author of the study and member of the Tübingen team. He adds that other Asian populations appear to be descended from members of a later migratory movement from Africa to northern Eurasia about 50,000 years ago.

The researchers are confident that continued field work and advances in genetics will allow for fine-tuning of models of human expansion out of Africa. So far we can only speculate whether, for example, severe droughts in East Africa occurring between 135,000 and 75,000 years ago prompted migration or had an impact on the local evolution of human populations. The southern route region is a vast geographical space that has been understudied by archaeologists and anthropologists, so future work in this area will help support their findings.

Figures for the media are available at:
University of Tübingen, Public Relations Office, Phone +49 7071 29 77853, janna.eberhardt[at]uni-tuebingen.de

Publication:
Hugo Reyes-Centeno, Silvia Ghirotto, Florent Détroit, Dominique Grimaud-Hervé, Guido Barbujani, Katerina Harvati: Genomic and Cranial Phenotype Data Support Multiple Modern Human Dispersals from Africa and a Southern Route into Asia. Proceedings of the National Academy of Sciences, online Early Edition in the week of April 21, 2014.

Contact:
Prof. Dr. Katerina Harvati
University of Tübingen – Institute for Archaeological Sciences
Senckenberg Center for Human Evolution and Palaeoenvironment
Phone +49 7071 29-76516
katerina.harvati[at]ifu.uni-tuebingen.de

The University of Tübingen

Innovative.Interdisciplinary.International.Since 1477. These have always been the University of Tübingen’s guiding principles in research and teaching. With its long tradition, Tübingen is one of Germany’s most respected universities. Tübingen’s Neuroscience Excellence Cluster, Empirical Education Research Graduate School and institutional strategy are backed by the German government’s Excellence Initiative, making Tübingen one of eleven German universities with the title of excellence. Tübingen is also home to six Collaborative Research Centers, participates in four Transregional Collaborative Research Centers, and hosts six Graduate Schools.

Our core research areas include: integrative neuroscience, clinical imaging, translational immunology and cancer research, microbiology and infection research, biochemistry and pharmaceuticals research, the molecular biology of plants, geo-environment research, astro- and elementary particle physics, quantum physics and nanotechnology, archeology and prehistory, history, religion and culture, language and cognition, media and education research.

The excellence of our research provides optimal conditions for students and academics from all over the world. 28,500 students are currently enrolled at the University of Tübingen. As a comprehensive research University, we offer more than 250 subjects. Our courses combine teaching and research, promoting a deeper understanding of the material while encouraging students to share their own knowledge and ideas. This philosophy gives Tübingen students strength and confidence in their fields and a solid foundation for interdisciplinary research.

Senckenberg Nature Research Society (Senckenberg Gesellschaft für Naturforschung)

To study and understand nature with its limitless diversity of living creatures and to preserve and manage it in a sustainable fashion as the basis of life for future generations – this has been the goal of the Senckenberg Nature Research Society (Senckenberg Gesellschaft für Naturforschung) for almost 200 years. Through its exhibits and museums Senckenberg showcases and shares the current results of its natural history research with the public and offers insights into the past and present changes in nature, their causes and effects.

Additional information is available at www.senckenberg.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft

Further reports about: Eurasia Homo sapiens Human Senckenberg dispersal populations

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>