Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First comprehensive microplastic survey in the Baltic Sea underway

21.08.2015

On August 17, 2015, a research team from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) headed out on the research vessel POSEIDON for the first compre-hensive survey of microplastic in the Baltic Sea, which will include up to 50 stations in the sampling campaign. Furthermore, the scientists will investigate, whether microbial communities alter their composition or show any other reaction to environmental pollu-tion, which would be reflected in their genetic fingerprint.

The POSEIDON, a research vessel of the ocean research institute GEOMAR in Kiel, started its expedition in Rostock and will cruise along the coast to circle the Baltic Sea once completely.


The research vessel POSEIDON will cruise the Baltic Sea for one month to conduct the microplastic survey.

GEOMAR / T. Beck


Small partikles, big impact: Microplastic has the potential to influence marine microbial communities as well as the marine foodwebs.

IOW / S. Oberbeckmann

“Whether we will be able to complete the full round trip with all 50 stations, depends on the weather conditions,” says Dr. Sonja Oberbeckmann, who coordinates the expedition as chief scientist. During the cruise, the marine microbiologist from the IOW working group Environmental Microbiology is also responsible for the research focus on microplastic.

„At every station we will sample the surface waters as well as the sediment to get a comprehensive overview, where and how much microplastic is present and which types of plastic materials can be found. This makes our expedition the first microplastic survey in the Baltic Sea of such comprehensiveness,” Sonja Oberbeckmann explains.

It has been recognized since the 1970s, that so-called microplastic – small to microscopic plastic particles with a diameter smaller than 5 millimeters – accumulates in marine envi-ronments. However, only for the last decade more extensive research is being done. Many products of daily use, for instance clothes and cosmetics, contain microplastic particles, which are released into the environment via domestic waste waters.

Furthermore, these micro-sized plastic particles are formed, when larger plastic fragments break down through photo-, thermal and/or biological degradation. Due to their small size, micro-plastic can readily be ingested by a wide range of marine organisms. Not solely the inges-tion of the particles themselves, but also associated toxins might pose a threat to the marine foodweb.

Moreover, the floating particles – despite their small size – provide ma-rine microorganisms with a solid surface, which they can colonize and where they can form dense biofilms. Marine microbial communities may contain pathogenic or toxic mi-crobes, often anthropogenically introduced.

They remain unproblematic as long as they occur in the water column in low densities. Microplastic therefore poses a possible threat, if such harmful organisms accumulate on the particles as biofilm.

“So far we have no actual evidence that microplastic contributes to the accumulation of pathogens or is acting as a transport vector for such microorganisms. However, there is no doubt that the man-made factor ‘microplastic’ as an additional habitat has the po-tential to impact marine microbial communities,” Sonja Oberbeckmann states.

To better understand this impact potential, the research team will conduct experiments aboard ship, in which new sterile microplastic pellets are incubated with water and sediment samples to analyze the biofilms that develop under controlled conditions.

“The compar-ison of the experimental biofilms with those of microplastic particles isolated from the Baltic Sea at the same sampling site will provide us with additional insight into the con-ditions for and the speed of biofilm development. The experiments will also provide us with information about biofilm interaction with the environment,” Oberbeckmann ex-plains.

The microplastic research on the POSEIDON is part of the joint project MikrOMIK (http://www.io-warnemuende.de/mikromik-home.html) under the lead of IOW marine microbi-ologist Dr. Matthias Labrenz, which merges the efforts of nine major research institutions in Germany and is funded by the Leibniz Association.

The second research focus of the POSEIDON expedition also concentrates on the microbial communities of the Baltic Sea. Here, the researchers aim at a comprehensive genetic characterization of those communities, especially in areas that are frequently exposed to pollution by environmental toxins. “In the Baltic Sea, such polluted zones particularly can be found in the inflow areas of big tributaries such as the Oder, the Vistula or the Neman river,” says environmental microbiologist Dr. Christin Bennke, who also participates in the expedition and coordinates this part of the research.

„During the expedition, we will systematically sample all big river plumes to see, whether the environmental stress has an impact on the composition of the microbial communities or even leads to genetic adaptations or other responses of the organisms, which are detectable in their overall genetic fingerprint,” the IOW scientist outlines her approach.

The research is part of the European research cooperation Blueprint (http://blueprint-project.org), which focuses on microbial communities as principal drivers of marine biogeochemistry to develop new concepts of deducing the environmental status of the Baltic Sea based on biodiversity and genetic profiles of microbes in seawater samples.

*Scientific Contact:
Dr. Sonja Oberbeckmann, IOW Working Group Environmental Microbiology
sonja.oberbeckmann@io-warnemuende.de

*Press and Public Relations at IOW:
Dr. Kristin Beck | Tel.: 0381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Tel.: 0381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>