Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finger on the pulse of wetlands

Many wetlands are difficult to observe over a long period. The reason for this is that the volume of water they channel varies all the time. Scientists from the University of Würzburg are now proposing a new method that allows wetland dynamics to be measured for the first time.
Wetlands like the Okavango Delta in southern Africa play an important role ecologically and economically. Not only do they provide a habitat for numerous species of animals and plants, they also have benefits for people. Often they are the only major water reservoir in an otherwise dry landscape. They also attract tourists and as such contribute to the livelihoods of local inhabitants.

Recording changes in wetlands

What impact will climate change have on such wetlands in Africa? It is predicted that this continent will become hotter and drier as a result of global changes. This might make the wetlands even more important in their role as water stores. But it might also completely dry them out.

“We need to be able to take the ‘pulse’ of the wetlands continuously so that we can observe changes and introduce any necessary countermeasures,” says Dr. Tobias Landmann from the University of Würzburg. This geographer, with his colleagues Christian Hüttich, Matthias Schramm, and Stefan Dech, has now made it possible to do this for the very first time. The journal “Remote Sensing Letters” presents the scientists’ method in its latest issue.

Finger on the pulse of the Linyanti Wetlands

The researchers chose the Linyanti Wetlands as their study object. This area is roughly 40 by 60 kilometers in size and lies in the east of Namibia on the border with Botswana, right in the middle of the dry savannah. It is fed by the Kwando River, which flows into a large delta in the Linyanti region, creating a considerable landscape of rivers and lakes.

How can we take the “pulse” of the Linyanti region continuously? Landmann and his colleagues have succeeded in doing this using image data from the NASA satellite MODIS. The satellite supplied high-resolution images of these African wetlands on an almost daily basis between 2001 and 2010. They clearly show the degree of flooding and the vitality of the vegetation, which are precisely the factors that interested the researchers since they wanted to know the following: how moist and green was Linyanti during this period, how did this fluctuate over the course of a year, and how did this vary from one year to another?

The Würzburg scientists took the satellite data and applied the so-called vector method to calculate the intensity and direction of the changes. This revealed that in some years the Linyanti region was drier, while in others it was more moist again. But, on the whole, the region became considerably more moist from 2001 to 2010.

“However, this does not allow any reliable statement regarding climate change because the time frame of just ten years is much too short,” says Landmann. This would require considerably longer time series. Such long-term measurements can now be undertaken for the earth’s wetlands for the first time – thanks to the wealth of satellite data available and thanks to the new method from Würzburg.

“MODIS based change vector analysis for assessing wetland dynamics in Southern Africa”, T. Landmann, M. Schramm, C. Huettich, and S. Dech, Remote Sensing Letters, published online 20 June 2012, DOI: 10.1080/2150704X.2012.699201


Dr. Tobias Landmann, Department of Remote Sensing, Institute of Geography and Geology at the University of Würzburg, T +49 (0)931 31-81869,

Robert Emmerich | Uni Würzburg
Further information:

Further reports about: African public sector Linyanti Remote Wetlands global change satellite data

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>