Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on the developments of the earthquake disaster

17.03.2011
The earthquake disaster on March 11 - scientific evaluation

The earthquake disaster on 11 March 2011 was an event of the century not only for Japan. With a magnitude of Mw = 8.9, it was one of the strongest earthquakes ever recorded worldwide. Particularly interesting is that here, two days before, a strong foreshock with a magnitude Mw = 7.2 took place almost exactly at the breaking point of the tsunami-earthquake. The geophysicist Joachim Saul from the GFZ German Research Centre for Geosciences (Helmholtz Association) created an animation which shows the sequence of quakes since March 9.

The animated image is available at www.gfz-potsdam.de . It shows the earthquake activity in the region of Honshu, Japan, measured at the GFZ since 8 March 2011. After a seismically quiet 8th March, the morning (coordinated universal time UTC) of the March 9 began with an earthquake of magnitude 7.2 off the Japanese east coast, followed by a series of smaller aftershocks. The morning of March 11 sees the earthquake disaster that triggered the devastating tsunami. This earthquake is followed by many almost severe aftershocks, two of which almost reach the magnitude 8. In the following time period the activity slowly subsides, and is dominated today (March 16) by relatively small magnitude 5 quakes, though several earthquakes of magnitude 6 are being registered on a daily basis. The activity of aftershocks focuses mainly on the area of the March 11 earthquake. Based on the distribution of the aftershocks, the length of the fraction of the main quake can be estimated at about 400 km. Overall, 428 earthquakes in the region of Honshu were registered at the GFZ since March 9.

By analysing over 500 GPS stations, the GFZ scientists Rongjiang Wang and Thomas Walter have found that horizontal displacements of up to five meters in an eastern direction occurred at the east coast of Japan. The cause lies in the earthquake zone, i.e. at the contact interface of the Pacific plate with Japan. Computer simulations of this surface show that an offset of up to 25 meters occurred during the earthquake. Calculations of the GFZ modeling group headed by Stephan Sobolev even yielded a displacement of up to 27 meters and a vertical movement of seven meters. This caused an abrupt elevation in the deep sea, and thus triggered the tsunami. The images of the GPS displacement vectors and the computer simulations can also be found among the online material provided by the GFZ.

Already shortly after the quake Andrey Babeyko and Stephan Sobolev of the GFZ modeled the propagation and wave heights of the tsunami in the Pacific over the first 16 hours. The tremendous force of the earthquake is highlighted here, too: in the open Pacific, relatively large wave heights of over one meter were calculated, which agrees very well with the observations. How high the tsunami is piled up on the coast is largely determined by water depth and the shape of the coastline. The GFZ material also contains an image and an animation regarding this work.

Click here for further information:
www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/001_+Japan
Also the other research centres of the Helmholtz Association offer information on the catastrophe in Japan: www.helmholtz.de/japan

F. Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de
http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/001_+Japan
http://www.helmholtz.de/japan

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>