Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Final instruments on NASA climate/weather satellite integrated

The last of five instruments slated to fly on the upcoming NPOESS Preparatory Project (NPP) climate and weather satellite have been successfully integrated, according to NASA officials. The polar-orbiting satellite is scheduled to launch in late 2011.

The NPP satellite was a pre-cursor mission to the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that has recently been restructured. The last instrument, Cross-track Infrared Sounder (CrIS), is an advanced atmospheric sensor, built by ITT Corporation, Fort Wayne, Ind. Ball Aerospace & Technologies Corp., Boulder, Colo., built the NPP spacecraft and is performing the integration and checkout of the NPP satellite.

The CrIS mechanical, electrical and performance testing was successfully completed and the NPP Satellite team is now working to finish the satellite Pre-Environmental Test baseline performance phase. The Environmental Test flow, which includes Dynamics, Electromagnetic Compatibility, and Thermal testing, is scheduled to begin this October.

The five-instrument suite will collect and distribute remotely sensed land, ocean, and atmospheric data to the meteorological and global climate change communities. It will provide atmospheric and sea surface temperatures, humidity sounding, land and ocean biological productivity, cloud and aerosol properties and total/profile ozone measurements.

Data produced by the CrIS instrument combined with data from the Advanced Technology Microwave Sounder, another NPP instrument, will provide global atmospheric temperature, moisture and pressure profiles from space.

The other three instruments include: the Visible/Infrared Imager/Radiometer Suite, which will collect information about atmospheric clouds, the earth radiation budget, clear-air land/water surfaces, sea surface temperature, ocean color, and produces low light visible imagery; the Ozone Mapping and Profiler Suite, which will monitor ozone and continue the daily global data produced by the current ozone monitoring systems, but with higher fidelity and the Cloud and Earth Radiant Energy System that will measure the Earth's radiant energy balance and help researchers to develop improved weather forecasts and climate model predictions.

The NPP mission is a NASA-managed project to provide continuity with NASA's Earth Observing System measurements and to provide risk reduction for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) managed by the NPOESS Integrated Program Office, a tri-agency program made up of NASA, NOAA and the U.S. Department of Defense. However in 2010, due to cost overruns and delays, a task force led by the President's Office of Science and Technology Policy recommended against continuing NPOESS.

NASA's Goddard Space Flight Center manages the NPP mission on behalf of the Earth Science Division of the Science Mission Directorate at NASA Headquarters, Washington.

Cynthia O'Carroll | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>