Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiery volcano offers geologic glimpse into land that time forgot

20.10.2011
Video clip of lava bubbles posted

The first scientists to witness exploding rock and molten lava from a deep sea volcano, seen during a 2009 expedition, report that the eruption was near a tear in the Earth's crust that is mimicking the birth of a subduction zone.


The operations area at West Mata volcano during the 2009 expedition is part of the Lau Basin, bounded by Samoa, Tonga and Fiji. Credit: NSF/NOAA

Scientists on the expedition collected boninite, a rare, chemically distinct lava that accompanies the formation of Earth's subduction zones.

Nobody has ever collected fresh boninite and scientists never had the opportunity to monitor its eruption before, said Joseph Resing, University of Washington oceanographer and lead author of an online article on the findings in Nature Geoscience. Earth's current subduction zones are continually evolving but most formed 5 million to 200 million years ago. Scientists have only been able to study boninite collected from long-dead, relic volcanos millions of years old.

Resing was chief scientist on the expedition, funded by the National Oceanic and Atmospheric Administration and the National Science Foundation, that pinpointed the location of the West Mata volcano, erupting 4,000 feet (1,200 meters) below the surface in the Southwest Pacific Ocean. Watch clip of eruption on YouTube at http://www.youtube.com/watch?v=qaKnWF5ORsU.

"Everything about the eruption itself – how fast, how intense, the ratio of lava to explosive fragments, the amount and composition of gas released – is new to us," said co-author Kenneth Rubin, University of Hawaii geologist. "Plus, having a young, fresh occurrence of this very rare rock type to study gives us the opportunity to examine subtle chemical and mineralogical variations in a pristine specimen."

At subduction zones the oceanic crust on one tectonic plate slides beneath another, producing abundant volcanism and contributing heat, gases and mineral-laden fluids to ocean waters. Scientists have long studied the impact of subduction zones on geological and geochemical cycles. To puzzle out how subduction zones form and evolve they study inactive contemporary marine volcanos that do not produce boninite and they collect and study boninite lavas collected on land and examine cores collected from the deep sea.

"West Mata lies above the subducting Pacific plate and is part of the rapidly expanding Lau Basin, which is bounded by Samoa, Tonga and Fiji," Resing said. "The large bend at the northern end of the Tonga trench produces a tear in the Pacific plate and creates unusual lavas that usually only form at very young subduction zones."

Conditions are right for boninite to form, there's lots of seawater released from subducting rock that mixes into relatively shallow mantle that has previously melted, causing the mantle to remelt at high temperatures. Boninite lavas are believed to be among the hottest from volcanos that erupt on Earth.

"What makes this exciting is how uncommon these eruptions of boninite are, both now and in the past," Rubin said. "Locked within the boninite is critical information about the rates and magnitudes of subduction-zone magmatism and global geochemical cycles."

The scientists writing in Nature Geoscience think the release of gaseous water, carbon dioxide and sulfur dioxide from the slab is the reason the eruption was so explosive. No one realized such energetic eruptions happened so deep, Resing says. Streams of red and gold lava 35 feet long shot through the water and lava-skinned bubbles some three feet across emerged.

West Mata, which the scientists estimate has been erupting for at least three years, and eight other elongated volcanoes that overlap each other in the northeast Lau Basin sit within one of the most magmatically active areas on Earth, Resing says.

"The basin may prove an important place to study submarine volcanic eruptions in relation to early stages of subduction," he said.

Rubin and Robert Embley, with NOAA's Pacific Marine Environmental Laboratory, Newport, Ore., and co-author on the paper, will return to the area in November for further study and to try to determine if the volcano is still actively erupting.

"Observing the eruption in real time was a rare and special opportunity because we know so little about how submarine volcanic activity behaves," Embley said. "This is one of only a handful of 'glimpses' of the process we've had to date and is the first time we've actually observed natural submarine light from the glowing magma."

Resing's UW appointment is through NOAA and the Joint Institute for the Study of the Atmosphere and Oceans based at the UW. Other co-authors from the UW and the joint institute are Marvin Lilley, David Butterfield and Nathaniel Buck. Other co-authors are from NOAA-Pacific Marine Environmental Laboratories, Oregon State University, ETH Zurich, Marine Biological Laboratory, Woods Hole Oceanographic Institutions, Monterey Bay Aquarium Research Institute, University of Tulsa, Oregon Health & Science University and Portland State University.

The project was funded by NSF, NOAA and the David and Lucile Packard Foundation.

For more information:

Resing,
206-526-6184,
resing@uw.edu
Rubin,
808-956-8973,
krubin@hawaii.edu
Embley,
541-867-0275,
robert.w.embley@noaa.gov
Video of erupting lava
http://www.youtube.com/watch?v=qaKnWF5ORsU
Images available
http://www.flickr.com/photos/63901270@N06/sets/72157627806806889/
Suggested websites
2009 expedition
UW release, 2009 expedition
http://www.washington.edu/news/archive/id/54413
NOAA, 2009 expedition
http://oceanexplorer.noaa.gov/explorations/09laubasin/welcome.html
NSF, 2009 expedition
http://www.nsf.gov/news/news_summ.jsp?cntn_id=116098
Resing
http://jisao.washington.edu/node/470
Nature Geoscience abstract
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1275.html
West Mata
http://en.wikipedia.org/wiki/West_Mata
Rubin
http://www.soest.hawaii.edu/krubin/kenchron.html
Embley
http://www.pmel.noaa.gov/vents/staff/embley.html
JISAO
http://www.jisao.washington.edu/
Co-authors and affiliations
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1275.html

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>