Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiery volcano offers geologic glimpse into land that time forgot

20.10.2011
Video clip of lava bubbles posted

The first scientists to witness exploding rock and molten lava from a deep sea volcano, seen during a 2009 expedition, report that the eruption was near a tear in the Earth's crust that is mimicking the birth of a subduction zone.


The operations area at West Mata volcano during the 2009 expedition is part of the Lau Basin, bounded by Samoa, Tonga and Fiji. Credit: NSF/NOAA

Scientists on the expedition collected boninite, a rare, chemically distinct lava that accompanies the formation of Earth's subduction zones.

Nobody has ever collected fresh boninite and scientists never had the opportunity to monitor its eruption before, said Joseph Resing, University of Washington oceanographer and lead author of an online article on the findings in Nature Geoscience. Earth's current subduction zones are continually evolving but most formed 5 million to 200 million years ago. Scientists have only been able to study boninite collected from long-dead, relic volcanos millions of years old.

Resing was chief scientist on the expedition, funded by the National Oceanic and Atmospheric Administration and the National Science Foundation, that pinpointed the location of the West Mata volcano, erupting 4,000 feet (1,200 meters) below the surface in the Southwest Pacific Ocean. Watch clip of eruption on YouTube at http://www.youtube.com/watch?v=qaKnWF5ORsU.

"Everything about the eruption itself – how fast, how intense, the ratio of lava to explosive fragments, the amount and composition of gas released – is new to us," said co-author Kenneth Rubin, University of Hawaii geologist. "Plus, having a young, fresh occurrence of this very rare rock type to study gives us the opportunity to examine subtle chemical and mineralogical variations in a pristine specimen."

At subduction zones the oceanic crust on one tectonic plate slides beneath another, producing abundant volcanism and contributing heat, gases and mineral-laden fluids to ocean waters. Scientists have long studied the impact of subduction zones on geological and geochemical cycles. To puzzle out how subduction zones form and evolve they study inactive contemporary marine volcanos that do not produce boninite and they collect and study boninite lavas collected on land and examine cores collected from the deep sea.

"West Mata lies above the subducting Pacific plate and is part of the rapidly expanding Lau Basin, which is bounded by Samoa, Tonga and Fiji," Resing said. "The large bend at the northern end of the Tonga trench produces a tear in the Pacific plate and creates unusual lavas that usually only form at very young subduction zones."

Conditions are right for boninite to form, there's lots of seawater released from subducting rock that mixes into relatively shallow mantle that has previously melted, causing the mantle to remelt at high temperatures. Boninite lavas are believed to be among the hottest from volcanos that erupt on Earth.

"What makes this exciting is how uncommon these eruptions of boninite are, both now and in the past," Rubin said. "Locked within the boninite is critical information about the rates and magnitudes of subduction-zone magmatism and global geochemical cycles."

The scientists writing in Nature Geoscience think the release of gaseous water, carbon dioxide and sulfur dioxide from the slab is the reason the eruption was so explosive. No one realized such energetic eruptions happened so deep, Resing says. Streams of red and gold lava 35 feet long shot through the water and lava-skinned bubbles some three feet across emerged.

West Mata, which the scientists estimate has been erupting for at least three years, and eight other elongated volcanoes that overlap each other in the northeast Lau Basin sit within one of the most magmatically active areas on Earth, Resing says.

"The basin may prove an important place to study submarine volcanic eruptions in relation to early stages of subduction," he said.

Rubin and Robert Embley, with NOAA's Pacific Marine Environmental Laboratory, Newport, Ore., and co-author on the paper, will return to the area in November for further study and to try to determine if the volcano is still actively erupting.

"Observing the eruption in real time was a rare and special opportunity because we know so little about how submarine volcanic activity behaves," Embley said. "This is one of only a handful of 'glimpses' of the process we've had to date and is the first time we've actually observed natural submarine light from the glowing magma."

Resing's UW appointment is through NOAA and the Joint Institute for the Study of the Atmosphere and Oceans based at the UW. Other co-authors from the UW and the joint institute are Marvin Lilley, David Butterfield and Nathaniel Buck. Other co-authors are from NOAA-Pacific Marine Environmental Laboratories, Oregon State University, ETH Zurich, Marine Biological Laboratory, Woods Hole Oceanographic Institutions, Monterey Bay Aquarium Research Institute, University of Tulsa, Oregon Health & Science University and Portland State University.

The project was funded by NSF, NOAA and the David and Lucile Packard Foundation.

For more information:

Resing,
206-526-6184,
resing@uw.edu
Rubin,
808-956-8973,
krubin@hawaii.edu
Embley,
541-867-0275,
robert.w.embley@noaa.gov
Video of erupting lava
http://www.youtube.com/watch?v=qaKnWF5ORsU
Images available
http://www.flickr.com/photos/63901270@N06/sets/72157627806806889/
Suggested websites
2009 expedition
UW release, 2009 expedition
http://www.washington.edu/news/archive/id/54413
NOAA, 2009 expedition
http://oceanexplorer.noaa.gov/explorations/09laubasin/welcome.html
NSF, 2009 expedition
http://www.nsf.gov/news/news_summ.jsp?cntn_id=116098
Resing
http://jisao.washington.edu/node/470
Nature Geoscience abstract
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1275.html
West Mata
http://en.wikipedia.org/wiki/West_Mata
Rubin
http://www.soest.hawaii.edu/krubin/kenchron.html
Embley
http://www.pmel.noaa.gov/vents/staff/embley.html
JISAO
http://www.jisao.washington.edu/
Co-authors and affiliations
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1275.html

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>