Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fernand's Remnants Still Drenching Eastern Mexico

28.08.2013
Tropical moisture continued to stream over eastern Mexico on Aug. 27, from the remnants of former Tropical Storm Fernand. NASA's TRMM satellite captured the moisture-laden Tropical Storm Fernand after it made landfall and was dropping rainfall at a rate of 2 inches/50 mm per hour.

On Aug. 27 at 10:32 EDT, radar data from Mexico showed rainfall streaming in from near the city of Tampico on the Gulf of Mexico, to the west and northwest. Areas including Ebano and Panuco were experiencing heavy rainfall at the time.


On Monday August 26 at 1:34 a.m. EDT, NASA's TRMM satellite saw Tropical Storm Fernand already drenching the state of Veracruz along Mexico's eastern coast, while System 95E was soaking the west coast. Image Credit: SSAI/NASA, Hal Pierce

The center of Fernand's remnants were near 20.6 north latitude and 98.5 west longitude, which is between the states of Hidalgo and Veracruz. Fernand's remnants are keeping the region cloud-covered, as seen on NOAA's GOES-East satellite imagery. The GOES imagery, created by NASA's GOES Project at NASA Goddard Space Flight Center

The National Meteorological Service or NMS of Mexico expects Fernand's remnants to generate intense and heavy rain to the northeastern states, east and central Mexico. A warning remains in effect for heavy rainfall. The NMS of Mexico noted that heavy rainfall is possible on Aug. 27 in Veracruz, Puebla, Hidalgo, San Luis Potosi and Tamaulipas. Heavy rainfall is also possible in Distrito Federal, Tlaxcala and Queretaro.

On Monday August 26 at 0534 UTC (1:34 a.m. EDT), Tropical Storm Fernand was already drenching the state of Veracruz along Mexico's eastern coast on the Gulf of Mexico when NASA's TRMM satellite flew overhead. TRMM, the Tropical Rainfall Measuring Mission Satellite captured data about the rainfall rates occurring in Fernand at the time.

That data was visualized at NASA's Goddard Space Flight Center in Greenbelt, Md. A rainfall analysis from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments was overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS). The TRMM PR found rain falling at a rate of over 118mm/~4.6 inches per hour in rain bands north of Fernand's center of circulation. Those same TRMM PR data clearly showed the location of Fernand's nearly rain free center of circulation.

TRMM's Precipitation Radar (PR) data were used at NASA to create a 3-D image of the storm's structure. TRMM also captured imagery of nearby System 95E in the eastern Pacific. In that storm, the tallest thunderstorm tops were found to reach heights of above 18.5 km/~10.9 miles. Those powerful storms were located off Mexico's Pacific coast southeast of Acapulco.

Heavy rainfall from Fernand may still produce some life threatening flash floods and mudslides today.

Text credit: Hal Pierce/Rob Gutro
SSAI/NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/fernand-atlanticgulf-of-mexico/

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>