Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fastest Sea-Level Rise in Two Millennia Linked to Increasing Global Temperatures

21.06.2011
Rate is greater now than at any time during past 2,100 years

The rate of sea level rise along the U.S. Atlantic coast is greater now than at any time in the past 2,000 years--and has shown a consistent link between changes in global mean surface temperature and sea level.


Rising seas lap at the house in "Nights in Rodanthe," filmed during the field work. Credit: Andrew Kemp, Yale University

The findings are published this week in the journal Proceedings of the National Academy of Sciences (PNAS).

The research, funded by the National Science Foundation (NSF), was conducted by Andrew Kemp, Yale University; Benjamin Horton, University of Pennsylvania; Jeffrey Donnelly, Woods Hole Oceanographic Institution; Michael Mann, Pennsylvania State University; Martin Vermeer, Aalto University School of Engineering, Finland; and Stefan Rahmstorf, Potsdam Institute for Climate Impact Research, Germany.

"Having a detailed picture of rates of sea level change over the past two millennia provides an important context for understanding current and potential future changes," says Paul Cutler, program director in NSF's Division of Earth Sciences.

"It's especially valuable for anticipating the evolution of coastal systems," he says, "in which more than half the world's population now lives."

Adds Kemp, "Scenarios of future rise are dependent on understanding the response of sea level to climate changes. Accurate estimates of past sea-level variability provide a context for such projections."

Kemp and colleagues developed the first continuous sea-level reconstruction for the past 2,000 years, and compared variations in global temperature to changes in sea level over that time period.

The team found that sea level was relatively stable from 200 BC to 1,000 AD.

Then in the 11th century, sea level rose by about half a millimeter each year for 400 years, linked with a warm climate period known as the Medieval Climate Anomaly.

Then there was a second period of stable sea level during a cooler period called the Little Ice Age. It persisted until the late 19th century.

Since the late 19th century, sea level has risen by more than 2 millimeters per year on average, the steepest rate for more than 2,100 years.

"Sea-level rise is a potentially disastrous outcome of climate change," says Horton, "as rising temperatures melt land-based ice, and warm ocean waters."

To reconstruct sea level, the scientists used microfossils called foraminifera preserved in sediment cores extracted from coastal salt marshes in North Carolina. The age of the cores was estimated using radiocarbon dating and other techniques.

To test the validity of their approach, the team compared its reconstructions with tide-gauge measurements from North Carolina for the past 80 years, and global tide-gauge records for the past 300 years.

A second reconstruction from Massachusetts confirmed their findings.

The records were corrected for contributions to sea-level rise made by vertical land movements.

The reconstructed changes in sea level over the past millennium are consistent with past global temperatures, the researchers say, and can be determined using a model relating the rate of sea level rise to global temperature.

"Data from the past helped calibrate our model, and will improve sea level rise projections under scenarios of future temperature increases," says Rahmstorf.

Support for the research also was provided by the National Oceanic and Atmospheric Administration, United States Geological Survey, the Academy of Finland, the European Science Foundation through European Cooperation in Science and Technology and the University of Pennsylvania.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>