Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Fanged Dwarf Dinosaur From Africa Ate Plants

04.10.2012
With tiny 1-inch long jaws, a new species of plant-eater has come to light in rocks in South Africa dating to the early dinosaur era, some 200 million years ago.

This “punk-sized” herbivore is one of a menagerie of bizarre, tiny, fanged plant-eaters called heterodontosaurs, or “different toothed reptiles,” that were among the first dinosaurs to spread across the planet.

The single specimen of the new species was originally chipped out of red rock in southern Africa in the 1960s and discovered in a collection of fossils at Harvard University by Paul Sereno, paleontologist and professor at the University of Chicago and National Geographic Explorer-in-Residence. Details of the dinosaur’s anatomy and lifestyle are part of a monograph by Sereno dedicated to these puny herbivores and published in the online journal ZooKeys.

Named Pegomastax africanus, or “thick jaw from Africa,” the new species had a short parrot-shaped beak up front, a pair of stabbing canines, and tall teeth tucked behind for slicing plants. The tall teeth in upper and lower jaws operated like self-sharpening scissors, with shearing wear facets that slid past one another when the jaws closed. The parrot-shaped skull, less than three inches long, may have been adapted to plucking fruit.

“Very rare,” admits Sereno, “that a plant-eater like Pegomastax would sport sharp-edged, enlarged canines” like that of a vampire. Some scientists have argued that consuming meat or at the least insects was a good part of the diet of heterodontosaurs, which evolved near the root of the great bird-hipped radiation of dinosaurs that includes the famous plant-eaters Triceratops and Stegosaurus.

Self-defense and competitive sparring for mates is more likely their role, argues Sereno in the study, based on microscopic examination of the teeth of Pegomastax and kin. Wear facets and chipped enamel suggest that the fangs of Pegomastax and other heterodontosaurs were used like those of living fanged deer for nipping or even digging rather than slicing flesh.

A bizarre covering of bristles, something like that of a porcupine, likely covered most of the body of Pegomastax, which measured less than two-feet in length and weighed less than a housecat. These bristles first came to light in a similar-sized heterodontosaur, Tianyulong, discovered recently in China and described in the study. Buried in lake sediment and covered by volcanic ash, Tianyulong preserves hundreds of bristles spread across its body from its neck to the tip of its tail. In life, dwarf-sized heterodontosaurs like Pegomastax would have scampered around in search of suitable plants, says Sereno, looking something like a “nimble two-legged porcupine.”

When Pegomastax lived some 200 million years ago, the supercontinent Pangaea had just begun to split into northern and southern landmasses. Heterodontosaurs appear to have divided similarly, the study argues, the northern species with simple triangular teeth like Tianyulong and the southern species with taller crowns like Pegomastax.

Sereno marvels at these punk-sized early herbivores that spread across the globe. Although virtually unknown to the public, “Pegomastax and kin were the most advanced plant-eaters of their day.”

Citation: Paul C. Sereno, “Taxonomy, Morphology, Masticatory Function and Phylogeny of Heterodontosaurid Dinosaurs,” ZooKeys online, Oct. 3, 2012.

Funding sources: The National Geographic Society, Whitten-Newman Foundation, Island Fund of the New York Community Trust, Pritzker Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: African public sector GEOGRAPHIC Pegomastax Plants ZooKeys dinosaur dwarf new species

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>