Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Famous paintings help study the Earth’s past atmosphere

25.03.2014

A team of Greek and German researchers has shown that the colours of sunsets painted by famous artists can be used to estimate pollution levels in the Earth’s past atmosphere.

In particular, the paintings reveal that ash and gas released during major volcanic eruptions scatter the different colours of sunlight, making sunsets appear more red. The results are published today in Atmospheric Chemistry and Physics, an open access journal of the European Geosciences Union (EGU).


The Lake, Petworth: Sunset, Fighting Bucks, by J. M. W. Turner

This work, obtained from WikiPaintings, is in the public domain


Sunset paintings and photographies (Island of Hydra, June 2010)

P. Tetsis (paintings) and C. Zerefos (photos)

When the Tambora volcano in Indonesia erupted in 1815, painters in Europe could see the colours of the sky changing. The volcanic ash and gas spewed into the atmosphere travelled the world and, as these aerosol particles scattered sunlight, they produced bright red and orange sunsets in Europe for up to three years after the eruption.

J. M. W. Turner was one of the artists who painted the stunning sunsets during that time. Now, scientists are using his, and other great masters’, paintings to retrieve information on the composition of the past atmosphere.

“Nature speaks to the hearts and souls of great artists,” says lead-author Christos Zerefos, a professor of atmospheric physics at the Academy of Athens in Greece. “But we have found that, when colouring sunsets, it is the way their brains perceive greens and reds that contains important environmental information.”

Zerefos and his team analysed hundreds of high-quality digital photographs of sunset paintings done between 1500 and 2000, a period including over 50 large volcanic eruptions around the globe. They were looking to find out whether the relative amounts of red and green along the horizon of each painting could provide information on the amount of aerosols in the atmosphere.

“We found that red-to-green ratios measured in the sunsets of paintings by great masters correlate well with the amount of volcanic aerosols in the atmosphere, regardless of the painters and of the school of painting,” says Zerefos.

Skies more polluted by volcanic ash scatter sunlight more, so they appear more red. Similar effects are seen with mineral (desert dust) or man-made aerosols. Air with a higher amount of aerosols has a higher ‘aerosol optical depth’, a parameter the team calculated using the red-to-green ratios in the paintings. They then compared these values with those given by independent proxies such as ice-core and volcanic-explosivity data, and found good agreement. The results obtained validate those of the team’s previous study, published in Atmospheric Chemistry and Physics in 2007.

To further support their model, the researchers asked a famous colourist to paint sunsets during and after the passage of a Saharan dust cloud over the island of Hydra in June 2010. The painter was not aware of the dust event. The scientists then compared measurements of the aerosol optical depth made by modern instruments with those estimated from the red-to-green ratios of the paintings and of digital photographs, and found that they all matched well.

Since aerosols scatter sunlight, less of it reaches the surface, leading to cooling. The Tambora eruption, the largest in recorded history, killed some 10,000 people directly and over 60,000 more due to the starvation and disease during the ‘volcanic winter’ that followed. Aerosol optical depth can be directly used in climate models, so having estimates for this parameter helps researchers understand how aerosols have affected the Earth’s climate in the past. This, in turn, can help improve predictions of future climate change.

“We wanted to provide alternative ways of exploiting the environmental information in the past atmosphere in places where, and in centuries when, instrumental measurements were not available,” concludes Zerefos.

###

Please mention the name of the publication (Atmospheric Chemistry and Physics) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.atmospheric-chemistry-and-physics.net/).

*More information*
This research is presented in the paper ‘Further evidence of important environmental information content in red-to-green ratios as depicted in paintings by great masters’ to appear in the EGU open access journal Atmospheric Chemistry and Physics on 25 March 2014.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.atmos-chem-phys.net/recent_papers.html. To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.

The discussion paper (before peer review) and reviewers’ comments are available at http://www.atmos-chem-phys-discuss.net/13/33145/2013/acpd-13-33145-2013.html

The team is composed of C. S. Zerefos (Academy of Athens, Athens, Greece &Navarino Environmental Observatory [NEO], Messinia, Greece), P. Tetsis (Academy of Athens), A. Kazantzidis (Laboratory of Atmospheric Physics, Physics Department, University of Patras, Greece), V. Amiridis (Institute of Astronomy, Astrophysics, Space Application and Remote Sensing, National Observatory of Athens, Greece), S. C. Zerefos (Hellenic Open University, Patras, Greece), J. Luterbacher (University of Giessen, Germany), K. Eleftheratos (Faculty of Geology and Geoenvironment, University of Athens, Greece), E. Gerasopoulos (NEO & Institute of Environmental Research and Sustainable Development [IERSD], National Observatory of Athens, Greece), S. Kazadzis (IERSD), and A. Papayannis (National Technical University of Athens, Athens, Greece).

The European Geosciences Union (www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 16 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contacts*
Christos Zerefos
Member of the Academy of Athens & Professor of Atmospheric Physics
Academy of Athens, Greece
Tel: +30-210-8832048 (contact Bárbara Ferreira for Zerefos' mobile number)
Email: zerefos@geol.uoa.gr

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Weitere Informationen:

http://www.egu.eu/news/106/famous-paintings-help-study-the-earths-past-atmospher...
http://www.atmospheric-chemistry-and-physics.net/

Dr. Bárbara Ferreira | European Geosciences Union

Further reports about: Atmospheric EGU Geosciences Observatory Physics atmosphere eruptions sunlight volcanic

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>