Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Famous paintings help study the Earth’s past atmosphere

25.03.2014

A team of Greek and German researchers has shown that the colours of sunsets painted by famous artists can be used to estimate pollution levels in the Earth’s past atmosphere.

In particular, the paintings reveal that ash and gas released during major volcanic eruptions scatter the different colours of sunlight, making sunsets appear more red. The results are published today in Atmospheric Chemistry and Physics, an open access journal of the European Geosciences Union (EGU).


The Lake, Petworth: Sunset, Fighting Bucks, by J. M. W. Turner

This work, obtained from WikiPaintings, is in the public domain


Sunset paintings and photographies (Island of Hydra, June 2010)

P. Tetsis (paintings) and C. Zerefos (photos)

When the Tambora volcano in Indonesia erupted in 1815, painters in Europe could see the colours of the sky changing. The volcanic ash and gas spewed into the atmosphere travelled the world and, as these aerosol particles scattered sunlight, they produced bright red and orange sunsets in Europe for up to three years after the eruption.

J. M. W. Turner was one of the artists who painted the stunning sunsets during that time. Now, scientists are using his, and other great masters’, paintings to retrieve information on the composition of the past atmosphere.

“Nature speaks to the hearts and souls of great artists,” says lead-author Christos Zerefos, a professor of atmospheric physics at the Academy of Athens in Greece. “But we have found that, when colouring sunsets, it is the way their brains perceive greens and reds that contains important environmental information.”

Zerefos and his team analysed hundreds of high-quality digital photographs of sunset paintings done between 1500 and 2000, a period including over 50 large volcanic eruptions around the globe. They were looking to find out whether the relative amounts of red and green along the horizon of each painting could provide information on the amount of aerosols in the atmosphere.

“We found that red-to-green ratios measured in the sunsets of paintings by great masters correlate well with the amount of volcanic aerosols in the atmosphere, regardless of the painters and of the school of painting,” says Zerefos.

Skies more polluted by volcanic ash scatter sunlight more, so they appear more red. Similar effects are seen with mineral (desert dust) or man-made aerosols. Air with a higher amount of aerosols has a higher ‘aerosol optical depth’, a parameter the team calculated using the red-to-green ratios in the paintings. They then compared these values with those given by independent proxies such as ice-core and volcanic-explosivity data, and found good agreement. The results obtained validate those of the team’s previous study, published in Atmospheric Chemistry and Physics in 2007.

To further support their model, the researchers asked a famous colourist to paint sunsets during and after the passage of a Saharan dust cloud over the island of Hydra in June 2010. The painter was not aware of the dust event. The scientists then compared measurements of the aerosol optical depth made by modern instruments with those estimated from the red-to-green ratios of the paintings and of digital photographs, and found that they all matched well.

Since aerosols scatter sunlight, less of it reaches the surface, leading to cooling. The Tambora eruption, the largest in recorded history, killed some 10,000 people directly and over 60,000 more due to the starvation and disease during the ‘volcanic winter’ that followed. Aerosol optical depth can be directly used in climate models, so having estimates for this parameter helps researchers understand how aerosols have affected the Earth’s climate in the past. This, in turn, can help improve predictions of future climate change.

“We wanted to provide alternative ways of exploiting the environmental information in the past atmosphere in places where, and in centuries when, instrumental measurements were not available,” concludes Zerefos.

###

Please mention the name of the publication (Atmospheric Chemistry and Physics) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.atmospheric-chemistry-and-physics.net/).

*More information*
This research is presented in the paper ‘Further evidence of important environmental information content in red-to-green ratios as depicted in paintings by great masters’ to appear in the EGU open access journal Atmospheric Chemistry and Physics on 25 March 2014.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.atmos-chem-phys.net/recent_papers.html. To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.

The discussion paper (before peer review) and reviewers’ comments are available at http://www.atmos-chem-phys-discuss.net/13/33145/2013/acpd-13-33145-2013.html

The team is composed of C. S. Zerefos (Academy of Athens, Athens, Greece &Navarino Environmental Observatory [NEO], Messinia, Greece), P. Tetsis (Academy of Athens), A. Kazantzidis (Laboratory of Atmospheric Physics, Physics Department, University of Patras, Greece), V. Amiridis (Institute of Astronomy, Astrophysics, Space Application and Remote Sensing, National Observatory of Athens, Greece), S. C. Zerefos (Hellenic Open University, Patras, Greece), J. Luterbacher (University of Giessen, Germany), K. Eleftheratos (Faculty of Geology and Geoenvironment, University of Athens, Greece), E. Gerasopoulos (NEO & Institute of Environmental Research and Sustainable Development [IERSD], National Observatory of Athens, Greece), S. Kazadzis (IERSD), and A. Papayannis (National Technical University of Athens, Athens, Greece).

The European Geosciences Union (www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 16 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contacts*
Christos Zerefos
Member of the Academy of Athens & Professor of Atmospheric Physics
Academy of Athens, Greece
Tel: +30-210-8832048 (contact Bárbara Ferreira for Zerefos' mobile number)
Email: zerefos@geol.uoa.gr

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Weitere Informationen:

http://www.egu.eu/news/106/famous-paintings-help-study-the-earths-past-atmospher...
http://www.atmospheric-chemistry-and-physics.net/

Dr. Bárbara Ferreira | European Geosciences Union

Further reports about: Atmospheric EGU Geosciences Observatory Physics atmosphere eruptions sunlight volcanic

More articles from Earth Sciences:

nachricht NASA sees wind shear affecting Hurricane Ignacio
02.09.2015 | NASA/Goddard Space Flight Center

nachricht Oxygen oasis in Antarctic lake reflects Earth in the distant past
02.09.2015 | University of California - Davis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>