Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Eye on Earl: RENCI Models the Path of Hurricane as Its Heads Towards the East Coast

02.09.2010
As Hurricane Earl strengthens and heads closer to North Carolina’s coast, RENCI researchers are tracking its every move with a Weather Research Forecast (WRF) model that plots the storm’s course on a grid, with each point in the grid representing a 3 kilometer by 3 kilometer box.

The model’s 3 km resolution is significant because it means scientists do not need to use parameterization schemes—a method used to predict the collective effects of many clouds that might exist within a grid box—in the model.

Parameterizations often result in models that underestimate a storm’s intensity, says Brian Etherton, a senior atmospheric scientist at RENCI. Storm intensity also affects the storm track, so RENCI’s model predicts a somewhat different track than the models run by the National Center for Environmental Prediction (NCEP), the National Weather Service division that provides most of the commonly used forecasting products.

“Our model shows Earl coming closer to the coast than the NCEP forecasts,” says Etherton. “The National Weather Service offices in Raleigh, Wilmington and Morehead City are all looking at our output. It is a research tool that we can compare to other models. When the storm is over we can evaluate our model and its value in predicting the track and intensity of Earl.”

... more about:
»Etherton »Eye Tracking »Hurricane »NCEP »RENCI »UNC »Weather

The high reolution WRF model was developed in collaboration with Gary Lackmann, an atmospheric scientist at North Carolina State University.

In addition to the WRF model, RENCI scientists are modeling coastal storm surge and waves associated with Hurricane Earl. Those models show that waves up to 4 meters high (more than 12 feet) might occur off the North Carolina coast by Friday. The models will also show storm surge, or the height of water pushed inland by the storm, as the storm moves closer to North Carolina.

All the models are run twice a day using RENCI’s Dell/Intel supercomputer Blue Ridge, which is capable of 8 trillion calculations per second.

View Hurricane Earl Storm track: http://www.sensordatabus.org/wrf/Pages/HurNCTimeSeries.aspx

View animated loop of Earl’s track: http://www.sensordatabus.org/wrf/Pages/HurNCImagesLoops.aspx

About RENCI
RENCI (the Renaissance Computing Institute) applies advanced technology resources and expertise to problems identified by the state of North Carolina and to university research initiatives. Its research contributes to the development of the next generation of technology infrastructure and cyber tools. Founded as a major collaboration involving UNC Chapel Hill, Duke University and North Carolina State University, RENCI is a statewide organization based at UNC Chapel Hill with facilities at campuses across North Carolina. For more see http://www.renci.org.

Karen Green | Newswise Science News
Further information:
http://www.renci.org

Further reports about: Etherton Eye Tracking Hurricane NCEP RENCI UNC Weather

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>