Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme summer temperatures occur more frequently

16.02.2012
Extreme summer temperatures are already occurring more frequently in the United States, and will become normal by mid-century if the world continues on a business as usual schedule of emitting greenhouse gases.

By analyzing observations and results obtained from climate models, a study led by Phil Duffy of the Lawrence Livermore National Laboratory showed that previously rare high summertime (June, July and August) temperatures are already occurring more frequently in some regions of the 48 contiguous United States.


The white colored rock (approximately 100 feet high) shows the drop in the water level of Lake Mead as a result of the ongoing 10-year drought along the Colorado River. Photo courtesy of Guy DeMeo , U.S. Geological Survey


The Vegetation Drought Response Index (VegDRI) incorporates satellite observations of vegetation to monitor at a finer spatial detail than other commonly used drought indicators. Photo courtesy of U.S. Geological Survey

"The observed increase in the frequency of previously rare summertime-average temperatures is more consistent with the consequences of increasing greenhouse gas concentrations than with the effects of natural climate variability," said Duffy, who is the lead author of a report in a recent edition of the journal, Climatic Change. "It is extremely unlikely that the observed increase has happened through chance alone."

The geographical patterns of increases in extreme summer temperatures that appear in observations are consistent with those that are seen in climate model simulations of the 20th century, Duffy said.

Duffy and colleague Claudia Tebaldi, a senior scientist at the nonprofit news and research group Climate Central, showed that the models project that previously rare summer temperatures will occur in well more than 50 percent of summers by mid-century throughout the lower 48 states.

The team first compared the period 1975-2000 to the preceding 25 years, and found that both observations and results based on 16 global climate models show that summertime-average temperatures that were rare in the earlier period occurred more often in the later period, in certain regions. The agreement between observations and models demonstrates that the models are able to simulate changes in the occurrence of extreme summertime temperatures, Duffy said.

Duffy and Tebaldi performed a statistical analysis showing that the increases in rare summer temperatures seen in the later period are very unlikely to have occurred through chance weather variations.

Next, Duffy and Tebaldi assessed the present period, by using results obtained from climate models for 1995-2024; they found that summer temperatures that were extreme during 1950-1979 occur more often in the later time period. This supports the conclusion that extreme summertime temperatures are already occurring more frequently in parts of the lower 48 states. A second statistical analysis showed that this increase also is very unlikely to be due to chance weather variations alone, such as El Ninos or La Ninas.

Finally, the team evaluated model results for 2035-2064 (representing the middle of this century) and found that extreme summertime temperatures that were rare during 1950-1979 are projected to occur in most summers throughout the 48-state region in the mid-century period. For the mid-century, summertime mean temperatures that historically occurred only 5 percent of the time are projected to occur at least 70 percent to the time everywhere in the 48 state region.

"The South, Southwest and Northeast are projected to experience the largest increases in the frequency of unusually hot summers," Duffy said. "The strong increase in extremes in the Southwest and Northeast are explained by strong historical and projected warming there. This result is based upon assuming a commonly used scenario for future emissions of carbon dioxide, the main driver of human-caused climate change.

"What was historically a one in 20-year occurrence will occur with at least a 70 percent chance every year. This work shows an example of how climate change can affect weather extremes, as well as averages."

More Information

"Increasing prevalence of extreme summer temperatures in the U.S.," Climatic Change.

"Strengthening our understanding of climate change," Science & Technology Review, December 2010.

"Livermore Scientists Create Highest Resolution Global Climate Simulations To Date Using Supercomputers," LLNL news release, July 9, 2002.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>