Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme summer temperatures occur more frequently

16.02.2012
Extreme summer temperatures are already occurring more frequently in the United States, and will become normal by mid-century if the world continues on a business as usual schedule of emitting greenhouse gases.

By analyzing observations and results obtained from climate models, a study led by Phil Duffy of the Lawrence Livermore National Laboratory showed that previously rare high summertime (June, July and August) temperatures are already occurring more frequently in some regions of the 48 contiguous United States.


The white colored rock (approximately 100 feet high) shows the drop in the water level of Lake Mead as a result of the ongoing 10-year drought along the Colorado River. Photo courtesy of Guy DeMeo , U.S. Geological Survey


The Vegetation Drought Response Index (VegDRI) incorporates satellite observations of vegetation to monitor at a finer spatial detail than other commonly used drought indicators. Photo courtesy of U.S. Geological Survey

"The observed increase in the frequency of previously rare summertime-average temperatures is more consistent with the consequences of increasing greenhouse gas concentrations than with the effects of natural climate variability," said Duffy, who is the lead author of a report in a recent edition of the journal, Climatic Change. "It is extremely unlikely that the observed increase has happened through chance alone."

The geographical patterns of increases in extreme summer temperatures that appear in observations are consistent with those that are seen in climate model simulations of the 20th century, Duffy said.

Duffy and colleague Claudia Tebaldi, a senior scientist at the nonprofit news and research group Climate Central, showed that the models project that previously rare summer temperatures will occur in well more than 50 percent of summers by mid-century throughout the lower 48 states.

The team first compared the period 1975-2000 to the preceding 25 years, and found that both observations and results based on 16 global climate models show that summertime-average temperatures that were rare in the earlier period occurred more often in the later period, in certain regions. The agreement between observations and models demonstrates that the models are able to simulate changes in the occurrence of extreme summertime temperatures, Duffy said.

Duffy and Tebaldi performed a statistical analysis showing that the increases in rare summer temperatures seen in the later period are very unlikely to have occurred through chance weather variations.

Next, Duffy and Tebaldi assessed the present period, by using results obtained from climate models for 1995-2024; they found that summer temperatures that were extreme during 1950-1979 occur more often in the later time period. This supports the conclusion that extreme summertime temperatures are already occurring more frequently in parts of the lower 48 states. A second statistical analysis showed that this increase also is very unlikely to be due to chance weather variations alone, such as El Ninos or La Ninas.

Finally, the team evaluated model results for 2035-2064 (representing the middle of this century) and found that extreme summertime temperatures that were rare during 1950-1979 are projected to occur in most summers throughout the 48-state region in the mid-century period. For the mid-century, summertime mean temperatures that historically occurred only 5 percent of the time are projected to occur at least 70 percent to the time everywhere in the 48 state region.

"The South, Southwest and Northeast are projected to experience the largest increases in the frequency of unusually hot summers," Duffy said. "The strong increase in extremes in the Southwest and Northeast are explained by strong historical and projected warming there. This result is based upon assuming a commonly used scenario for future emissions of carbon dioxide, the main driver of human-caused climate change.

"What was historically a one in 20-year occurrence will occur with at least a 70 percent chance every year. This work shows an example of how climate change can affect weather extremes, as well as averages."

More Information

"Increasing prevalence of extreme summer temperatures in the U.S.," Climatic Change.

"Strengthening our understanding of climate change," Science & Technology Review, December 2010.

"Livermore Scientists Create Highest Resolution Global Climate Simulations To Date Using Supercomputers," LLNL news release, July 9, 2002.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>