Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring one of the largest salt flats in the world

27.07.2016

UMass Amherst researchers find Chilean salt flat drains a surprisingly vast area

A recent research report about one of the largest lithium brine and salt deposits in the world in Chile's Atacama Desert by geoscientists from the University of Massachusetts Amherst is the first to show that water and solutes flowing into the basin originate from a much larger than expected portion of the Andean Plateau.


UMass Amherst graduate student Lilly Corenthal making notes at one of the largest lithium brine and salt deposits in the world, a deposit 3,900 feet thick in Chile's Atacama Desert, with the Andes Mountains in the background. The basin drains a surprisingly larger area of the Andean Plateau than geoscientists had expected.

Credit: UMass Amherst

The astonishingly massive evaporite deposit, 3,900 feet (1,200 m) thick, appears to be draining an area far larger than a map-based or topographic watershed would suggest, says lead hydrologist David Boutt.

The brine volume present, contrasted with the relatively small surface drainage in such an arid area, poses fundamental questions about both the hydrologic and solute budgets at plateau margins, that is the relationship between input and accumulation, the authors say. Their answers should aid understanding of the water and mineral resources in one of the world's driest regions.

As Boutt explains, "The amazing finding is the fact that most of the water is originating from outside the topographic watershed, on the Andean Plateau, and it's draining an area four or five times bigger than the watershed. There is no outlet to this basin and it is capturing an unbelievably huge volume of water in an otherwise extremely arid environment." Details appear in a recent early online edition of Geophysical Research Letters.

Boutt and first author Lilly Corenthal, his former graduate student, say the physical and chemical connections between active tectonics, slopes, discharge zones and aquifers are not well characterized. In fact, they do not yet understand the conditions under which the massive evaporate deposit formed. Thus, the Chilean salt flat, Salar de Atacama, provides "a unique case-study to investigate questions about sub-surface fluid flow on the margins" of the Central Andean Plateau and others like it where mountain building forces are still active, they point out.

A drainage area that is several times larger than the topographic catchment is more common than people think, Boutt notes. "You can't assume that the surface catchment and ground water catchment are the same, and it tends not to happen in humid areas. But in dry areas--his is the driest non-polar desert in the world--the difference can be extensive, as it is in this case. And, this water is very, very old," he adds. In such closed basins, high concentrations of mineral deposits, in particular lithium brine, represent an increasingly important resource in high global demand.

The researchers collected 300 samples of freshwater and brine to analyze how much sodium is entering the basin. Boutt says, "knowing something about how much sodium is there now can help us reconstruct how much water must have been coming in over the 7 to 10 million years as the Andes plateau uplift was taking place. The high elevation regions of the Andes are like wicks pulling water out of the atmosphere and putting it into the basin," he adds.

They also used satellite precipitation data to "backsolve" the brine's origins using sodium concentrations, oxygen and hydrogen isotopes, as the isotopic composition of water reflects the condensation temperature and precipitation rate over time. The main controls are source of the moisture and condensation temperature, and whether or not the water has experienced evaporation, Boutt notes.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>