Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring one of the largest salt flats in the world

27.07.2016

UMass Amherst researchers find Chilean salt flat drains a surprisingly vast area

A recent research report about one of the largest lithium brine and salt deposits in the world in Chile's Atacama Desert by geoscientists from the University of Massachusetts Amherst is the first to show that water and solutes flowing into the basin originate from a much larger than expected portion of the Andean Plateau.


UMass Amherst graduate student Lilly Corenthal making notes at one of the largest lithium brine and salt deposits in the world, a deposit 3,900 feet thick in Chile's Atacama Desert, with the Andes Mountains in the background. The basin drains a surprisingly larger area of the Andean Plateau than geoscientists had expected.

Credit: UMass Amherst

The astonishingly massive evaporite deposit, 3,900 feet (1,200 m) thick, appears to be draining an area far larger than a map-based or topographic watershed would suggest, says lead hydrologist David Boutt.

The brine volume present, contrasted with the relatively small surface drainage in such an arid area, poses fundamental questions about both the hydrologic and solute budgets at plateau margins, that is the relationship between input and accumulation, the authors say. Their answers should aid understanding of the water and mineral resources in one of the world's driest regions.

As Boutt explains, "The amazing finding is the fact that most of the water is originating from outside the topographic watershed, on the Andean Plateau, and it's draining an area four or five times bigger than the watershed. There is no outlet to this basin and it is capturing an unbelievably huge volume of water in an otherwise extremely arid environment." Details appear in a recent early online edition of Geophysical Research Letters.

Boutt and first author Lilly Corenthal, his former graduate student, say the physical and chemical connections between active tectonics, slopes, discharge zones and aquifers are not well characterized. In fact, they do not yet understand the conditions under which the massive evaporate deposit formed. Thus, the Chilean salt flat, Salar de Atacama, provides "a unique case-study to investigate questions about sub-surface fluid flow on the margins" of the Central Andean Plateau and others like it where mountain building forces are still active, they point out.

A drainage area that is several times larger than the topographic catchment is more common than people think, Boutt notes. "You can't assume that the surface catchment and ground water catchment are the same, and it tends not to happen in humid areas. But in dry areas--his is the driest non-polar desert in the world--the difference can be extensive, as it is in this case. And, this water is very, very old," he adds. In such closed basins, high concentrations of mineral deposits, in particular lithium brine, represent an increasingly important resource in high global demand.

The researchers collected 300 samples of freshwater and brine to analyze how much sodium is entering the basin. Boutt says, "knowing something about how much sodium is there now can help us reconstruct how much water must have been coming in over the 7 to 10 million years as the Andes plateau uplift was taking place. The high elevation regions of the Andes are like wicks pulling water out of the atmosphere and putting it into the basin," he adds.

They also used satellite precipitation data to "backsolve" the brine's origins using sodium concentrations, oxygen and hydrogen isotopes, as the isotopic composition of water reflects the condensation temperature and precipitation rate over time. The main controls are source of the moisture and condensation temperature, and whether or not the water has experienced evaporation, Boutt notes.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>