Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring one of the largest salt flats in the world

27.07.2016

UMass Amherst researchers find Chilean salt flat drains a surprisingly vast area

A recent research report about one of the largest lithium brine and salt deposits in the world in Chile's Atacama Desert by geoscientists from the University of Massachusetts Amherst is the first to show that water and solutes flowing into the basin originate from a much larger than expected portion of the Andean Plateau.


UMass Amherst graduate student Lilly Corenthal making notes at one of the largest lithium brine and salt deposits in the world, a deposit 3,900 feet thick in Chile's Atacama Desert, with the Andes Mountains in the background. The basin drains a surprisingly larger area of the Andean Plateau than geoscientists had expected.

Credit: UMass Amherst

The astonishingly massive evaporite deposit, 3,900 feet (1,200 m) thick, appears to be draining an area far larger than a map-based or topographic watershed would suggest, says lead hydrologist David Boutt.

The brine volume present, contrasted with the relatively small surface drainage in such an arid area, poses fundamental questions about both the hydrologic and solute budgets at plateau margins, that is the relationship between input and accumulation, the authors say. Their answers should aid understanding of the water and mineral resources in one of the world's driest regions.

As Boutt explains, "The amazing finding is the fact that most of the water is originating from outside the topographic watershed, on the Andean Plateau, and it's draining an area four or five times bigger than the watershed. There is no outlet to this basin and it is capturing an unbelievably huge volume of water in an otherwise extremely arid environment." Details appear in a recent early online edition of Geophysical Research Letters.

Boutt and first author Lilly Corenthal, his former graduate student, say the physical and chemical connections between active tectonics, slopes, discharge zones and aquifers are not well characterized. In fact, they do not yet understand the conditions under which the massive evaporate deposit formed. Thus, the Chilean salt flat, Salar de Atacama, provides "a unique case-study to investigate questions about sub-surface fluid flow on the margins" of the Central Andean Plateau and others like it where mountain building forces are still active, they point out.

A drainage area that is several times larger than the topographic catchment is more common than people think, Boutt notes. "You can't assume that the surface catchment and ground water catchment are the same, and it tends not to happen in humid areas. But in dry areas--his is the driest non-polar desert in the world--the difference can be extensive, as it is in this case. And, this water is very, very old," he adds. In such closed basins, high concentrations of mineral deposits, in particular lithium brine, represent an increasingly important resource in high global demand.

The researchers collected 300 samples of freshwater and brine to analyze how much sodium is entering the basin. Boutt says, "knowing something about how much sodium is there now can help us reconstruct how much water must have been coming in over the 7 to 10 million years as the Andes plateau uplift was taking place. The high elevation regions of the Andes are like wicks pulling water out of the atmosphere and putting it into the basin," he adds.

They also used satellite precipitation data to "backsolve" the brine's origins using sodium concentrations, oxygen and hydrogen isotopes, as the isotopic composition of water reflects the condensation temperature and precipitation rate over time. The main controls are source of the moisture and condensation temperature, and whether or not the water has experienced evaporation, Boutt notes.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>