Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experts gather as volcanic dust settles

31.05.2010
Following the eruption of Iceland’s Eyjafjallajoekull volcano that spewed huge amounts of ash and grounded numerous flights, more than 50 experts from around the world gathered at a workshop organised by ESA and EUMETSAT to discuss what has been learned and identify future opportunities for volcanic ash monitoring.

The experts included meteorologists, ground-based, air-borne and Earth-observation specialists and modellers. While scientists and researchers shared information about the unique eruption, monitoring capabilities, modelling and validation techniques, the Volcanic Ash Advisory Centres (VAAC) explained their role and expectations of the scientific community.

Fred Prata, Senior Scientist for Atmosphere and Climate Change at the Norwegian Institute for Air Research, said: "Satellite data are extremely important for volcanic eruptions because they can occur anywhere, anytime, so you need a measurement system that can see the entire globe all the time.

"One missing part of the story is the vertical profile, which lidars in space can provide. ESA will launch a couple of scientific lidar missions in the future, ADM-Aeolus and EarthCARE."

The crucial role of infrared instruments was emphasised in several talks, highlighting EUMETSAT’s upcoming Meteosat Third Generation satellites, being developed by ESA.

"Infrared instruments are absolutely vital because they do not require sunlight so we can see volcanic emissions day or night. They also use a band between 8 and 12 microns, which is key because the particles that cause aviation problems are micron-sized," Prata said.

The presentations on ground-based and air-borne observations and modelling showed very good consistency, also with satellite observations, and it was well recognised all data and information needs to be combined for the best result.

"There has been an unprecedented amount of ground data collected by the European community on this ash cloud, providing a great opportunity to learn more about data-collection processes," said David Schneider, Research Geophysicist at the US Geological Survey, Alaska Volcano Observatory.

Philippe Husson, Aviation Weather Forecast Deputy and the Toulouse VAAC Manager for Meteo France, explained that observation requirements of volcanic ash evolved during the eruption to include numbers and expressed the impact this will have on VAACS.

"In the past, we used qualitative results to depict hazards, but now that we have been provided with ash threshold values we will probably be required to provide concentration maps with absolute numbers. As we must go from qualitative to quantitative information about ash concentrations and the distribution and size of particles, we need satellites to provide numbers," he said.

Husson said the threshold figures are not definitive and are being reassessed by aviation authorities. Several factors will be considered, including trial results of real ash in real engines, engine types and rates of ingestion, as flying 10 minutes in high concentration could be equivalent to six hours in weak concentration.

"As the decision was taken quickly there was not a lot of input from scientists, but now there is time to consult them to find out what confidence we can have in the numbers," he added.

A set of recommendations were outlined at the workshop. These will be documented in a joint ESA-EUMETSAT publication and made available online.

"I’m looking forward to the recommendations because the things being discussed here are essential for doing our job," said Jean-Paul Malingreau, Head of Unit Work Programme and Strategy of the Joint Research Centre of the European Commission.

"We also need to assess whether the available and future satellite instruments are sufficient, so recommendations on this can be made available to policymakers to decide what to finance."

Tammy Oaks | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/esaEO/SEMIR25NL9G_index_0.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>