Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experts call for added focus on the impact of glacier mass loss on downstream systems

05.09.2017

Researchers have warned of an 'urgent worldwide need' to address a broad spectrum of cascading impacts of glacier mass loss on downstream systems.

In their paper, published in Proceedings of the National Academy of Sciences, the authors synthesised currently available evidence and documented the profound impact on freshwater and near-shore marine systems.


Odenwinkelkees, Austrian Alps.

Credit: Dr. Lee Brown, University of Leeds

Although the impact of melting glaciers on sea levels has received much attention to date, this 'perspectives' paper outlines other multiple downstream effects of glacier change that will have significant societal implications. As such, the authors call for a renewed focus on planning adaptation and mitigation measures for the breadth of impacts in all affected regions.

Glaciers cover close to 10% of the Earth's land surface but are shrinking rapidly across most parts of the world. The area of land occupied by glaciers will decrease significantly by the end of the present century.

The largest individual contributions to global glacier mass loss come from the glaciers of the Gulf of Alaska, the Canadian Arctic, and the ice sheet peripheries of Greenland and Antarctica.

However, the glaciers with the most negative mass balances are located in the European Alps and at low latitudes in the South American Andes. In the European Alps, atmospheric warming has been pronounced in the last 30 years, especially during the summer months, which when combined with decreased snowfall, has led to a 54% loss of ice area since 1850. Current projections suggest that just 4-13% of the 2003 European Alps ice area will remain by 2100.

The changes in river hydrology and morphology due to climate-induced glacier loss are projected to be the greatest of any hydrological system. There will be significant changes to flow regimes in glacierised watersheds, with a shift to greater stochasticity as glacial runoff decreases and flow becomes more dependent on unpredictable precipitation events and snow melt. Glacier shrinkage will alter sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans.

An unexpected impact of glacier shrinkage is the liberation of contaminants including emission products from industrial activity, such as black carbon and associated compounds, mercury, pesticides, and other persistent organic pollutants. There is uncertainty in the release of these legacy contaminants from glacierised areas, though their transport to downstream systems by meltwater will eventually reduce as glacial ice volume shrinks.

These effects will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower and consumption.

Among the major impacts, there are profound changes to ecosystem function and services via altered provision of water resources to human society, reorganization of the regulatory processes that shape water quality and geohazards, and cultural changes associated with tourism, landscape character, and religion.

Lead author Professor Alexander Milner, from the School of Geography, Earth and Environmental Sciences at the University of Birmingham, explained, "We don't believe that the sheer enormity of the impact of glacial shrinkage on our downstream ecosystems has been fully integrated to date. From biodiversity to tourism, from hydropower to clean water supply, the breadth of risk to our current way of life is vast. The first step must be a realignment in how we view glacial shrinkage, and a research agenda that acknowledges the risk to regions likely to be most affected."

Co-author Dr Lee Brown, a freshwater ecologist at the University of Leeds' School of Geography, added: "Suitable management strategies will need to be developed and adopted to mitigate the societal impacts of profound changes in glacial runoff. Careful planning will be needed because, for example, building new reservoirs may solve water supply issues but impact negatively on landscape character and tourism."

The authors outlined four key recommendations that they believe should underpin a global research agenda involving interdisciplinary research:

  • Detailed mapping of glacier mass change from new imagery and processing technologies
  • Global monitoring and census efforts of key biogeochemical variables, contaminant loads and biodiversity in glacier-fed rivers via widespread monitoring networks with standardized sampling methods.

     

  • Valuation of the provision, regulation and cultural impact of glacier-related ecosystem services (particularly contaminant loads and commercial and sport fishery salmon habitats).

     

  • Adaptive management plans for glacier change in the most sensitive regions, including international legislation to protect strategic glacier-derived water resources.

Media Contact

Luke Harrison
l.harrison.1@bham.ac.uk
01-214-145-134

 @unibirmingham

http://www.bham.ac.uk 

Luke Harrison | EurekAlert!

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>