Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expedition yields unexpected clues to ocean mysteries

04.12.2013
UH geoscientist leads international drilling mission to lower crust of pacific

A University of Houston (UH) geoscientist and his colleagues are revealing new discoveries about the Earth's development, following a major international expedition that recovered the first-ever drill core from the lower crust of the Pacific Ocean.

Co-chief scientists Jonathan Snow from UH and Kathryn Gillis from University of Victoria in Canada led a team of 30 researchers from around the world on the $10 million expedition, finding a few surprises upon penetrating the lower crust of the Pacific. Their findings are described in the Dec. 1 issue of Nature in a paper titled "Primitive Layered Gabbros from Fast-Spreading Lower Oceanic Crust."

"The ocean crust makes up two-thirds of the Earth's surface and forms from volcanic magma at mid-ocean ridge spreading centers," Snow said. "The deepest levels of this process are hidden from view due to the miles of upper volcanic crust on top. So, until now we had to make educated guesses about the formation of the lower crust based on seismic evidence and the study of analogous rocks found on land."

Traveling aboard the Integrated Ocean Drilling Program Expedition 345 to the Hess Deep in the Pacific Ocean, the scientific voyagers recovered core sections of lower crustal rocks, called gabbros, that formed more than two miles beneath the sea floor. A large rift valley in the eastern equatorial Pacific, the Hess Deep is like an onion sliced and pulled apart, revealing its deeper layers.

"Hess Deep is like a window into the lower crust of the ocean, where we can drill directly into these lower crustal levels," Snow said. "This is where magma rising up from the Earth's mantle begins to crystallize on its way to eventual eruption at the sea floor."

The two-month expedition, aboard the drilling vessel JOIDES Resolution, confirmed for the first time the widespread existence of layered gabbros in the lower crust. This observation had been predicted by plate tectonic theory and analogies made to fragments of ocean crust found on land, called ophiolites, but only rarely had actual layered rocks been recovered from the ocean floor.

A second surprise discovered by the explorers was akin to "finding gold in a silver mine," according to Snow. By studying thin slices of the gabbros under polarizing microscopes, the scientists identified substantial amounts of the mineral orthopyroxene, a magnesium silicate that was thought to be absent from the lower crust.

"Orthopyroxene by itself is nothing special. Traces of it are often found at late stages of crystallization higher in the crust, but we never in our wildest dreams expected a lot of it in the lower crust," Snow said. "Although this mineral is not economically valuable, the discovery means that basic chemical reactions forming the lower crust will now have to be re-studied."

A third surprise, Snow says, casts doubt on one of the main theories of the construction of the lower ocean crust. It involved the mineral olivine, also a magnesium silicate. This mineral is known to grow in delicate crystals sometimes found in layered intrusions on land, but never expected in the ocean crust. This is because the separation of the tectonic plates was thought to deform the magma like play dough in a partially molten state that would have broken them up. However, Snow says, the last word isn't written on this, because the researchers just cored a small section of the crust in one place on this expedition. To know for sure, they will have to explore the lower crust more, which will require drilling.

The fourth phase of ocean drilling, to be called the "International Ocean Discovery Program," was approved in late November by the National Science Board (NSB). The NSB is the governing board of the National Science Foundation and is responsible for guiding the pursuit of national policies for promoting research and education in science and engineering.

The paper is now online at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12778.html.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 39,500 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at http://www.uh.edu/news-events/.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>