Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expedition yields unexpected clues to ocean mysteries

04.12.2013
UH geoscientist leads international drilling mission to lower crust of pacific

A University of Houston (UH) geoscientist and his colleagues are revealing new discoveries about the Earth's development, following a major international expedition that recovered the first-ever drill core from the lower crust of the Pacific Ocean.

Co-chief scientists Jonathan Snow from UH and Kathryn Gillis from University of Victoria in Canada led a team of 30 researchers from around the world on the $10 million expedition, finding a few surprises upon penetrating the lower crust of the Pacific. Their findings are described in the Dec. 1 issue of Nature in a paper titled "Primitive Layered Gabbros from Fast-Spreading Lower Oceanic Crust."

"The ocean crust makes up two-thirds of the Earth's surface and forms from volcanic magma at mid-ocean ridge spreading centers," Snow said. "The deepest levels of this process are hidden from view due to the miles of upper volcanic crust on top. So, until now we had to make educated guesses about the formation of the lower crust based on seismic evidence and the study of analogous rocks found on land."

Traveling aboard the Integrated Ocean Drilling Program Expedition 345 to the Hess Deep in the Pacific Ocean, the scientific voyagers recovered core sections of lower crustal rocks, called gabbros, that formed more than two miles beneath the sea floor. A large rift valley in the eastern equatorial Pacific, the Hess Deep is like an onion sliced and pulled apart, revealing its deeper layers.

"Hess Deep is like a window into the lower crust of the ocean, where we can drill directly into these lower crustal levels," Snow said. "This is where magma rising up from the Earth's mantle begins to crystallize on its way to eventual eruption at the sea floor."

The two-month expedition, aboard the drilling vessel JOIDES Resolution, confirmed for the first time the widespread existence of layered gabbros in the lower crust. This observation had been predicted by plate tectonic theory and analogies made to fragments of ocean crust found on land, called ophiolites, but only rarely had actual layered rocks been recovered from the ocean floor.

A second surprise discovered by the explorers was akin to "finding gold in a silver mine," according to Snow. By studying thin slices of the gabbros under polarizing microscopes, the scientists identified substantial amounts of the mineral orthopyroxene, a magnesium silicate that was thought to be absent from the lower crust.

"Orthopyroxene by itself is nothing special. Traces of it are often found at late stages of crystallization higher in the crust, but we never in our wildest dreams expected a lot of it in the lower crust," Snow said. "Although this mineral is not economically valuable, the discovery means that basic chemical reactions forming the lower crust will now have to be re-studied."

A third surprise, Snow says, casts doubt on one of the main theories of the construction of the lower ocean crust. It involved the mineral olivine, also a magnesium silicate. This mineral is known to grow in delicate crystals sometimes found in layered intrusions on land, but never expected in the ocean crust. This is because the separation of the tectonic plates was thought to deform the magma like play dough in a partially molten state that would have broken them up. However, Snow says, the last word isn't written on this, because the researchers just cored a small section of the crust in one place on this expedition. To know for sure, they will have to explore the lower crust more, which will require drilling.

The fourth phase of ocean drilling, to be called the "International Ocean Discovery Program," was approved in late November by the National Science Board (NSB). The NSB is the governing board of the National Science Foundation and is responsible for guiding the pursuit of national policies for promoting research and education in science and engineering.

The paper is now online at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12778.html.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 39,500 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at http://www.uh.edu/news-events/.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>