Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Expedition yields unexpected clues to ocean mysteries

UH geoscientist leads international drilling mission to lower crust of pacific

A University of Houston (UH) geoscientist and his colleagues are revealing new discoveries about the Earth's development, following a major international expedition that recovered the first-ever drill core from the lower crust of the Pacific Ocean.

Co-chief scientists Jonathan Snow from UH and Kathryn Gillis from University of Victoria in Canada led a team of 30 researchers from around the world on the $10 million expedition, finding a few surprises upon penetrating the lower crust of the Pacific. Their findings are described in the Dec. 1 issue of Nature in a paper titled "Primitive Layered Gabbros from Fast-Spreading Lower Oceanic Crust."

"The ocean crust makes up two-thirds of the Earth's surface and forms from volcanic magma at mid-ocean ridge spreading centers," Snow said. "The deepest levels of this process are hidden from view due to the miles of upper volcanic crust on top. So, until now we had to make educated guesses about the formation of the lower crust based on seismic evidence and the study of analogous rocks found on land."

Traveling aboard the Integrated Ocean Drilling Program Expedition 345 to the Hess Deep in the Pacific Ocean, the scientific voyagers recovered core sections of lower crustal rocks, called gabbros, that formed more than two miles beneath the sea floor. A large rift valley in the eastern equatorial Pacific, the Hess Deep is like an onion sliced and pulled apart, revealing its deeper layers.

"Hess Deep is like a window into the lower crust of the ocean, where we can drill directly into these lower crustal levels," Snow said. "This is where magma rising up from the Earth's mantle begins to crystallize on its way to eventual eruption at the sea floor."

The two-month expedition, aboard the drilling vessel JOIDES Resolution, confirmed for the first time the widespread existence of layered gabbros in the lower crust. This observation had been predicted by plate tectonic theory and analogies made to fragments of ocean crust found on land, called ophiolites, but only rarely had actual layered rocks been recovered from the ocean floor.

A second surprise discovered by the explorers was akin to "finding gold in a silver mine," according to Snow. By studying thin slices of the gabbros under polarizing microscopes, the scientists identified substantial amounts of the mineral orthopyroxene, a magnesium silicate that was thought to be absent from the lower crust.

"Orthopyroxene by itself is nothing special. Traces of it are often found at late stages of crystallization higher in the crust, but we never in our wildest dreams expected a lot of it in the lower crust," Snow said. "Although this mineral is not economically valuable, the discovery means that basic chemical reactions forming the lower crust will now have to be re-studied."

A third surprise, Snow says, casts doubt on one of the main theories of the construction of the lower ocean crust. It involved the mineral olivine, also a magnesium silicate. This mineral is known to grow in delicate crystals sometimes found in layered intrusions on land, but never expected in the ocean crust. This is because the separation of the tectonic plates was thought to deform the magma like play dough in a partially molten state that would have broken them up. However, Snow says, the last word isn't written on this, because the researchers just cored a small section of the crust in one place on this expedition. To know for sure, they will have to explore the lower crust more, which will require drilling.

The fourth phase of ocean drilling, to be called the "International Ocean Discovery Program," was approved in late November by the National Science Board (NSB). The NSB is the governing board of the National Science Foundation and is responsible for guiding the pursuit of national policies for promoting research and education in science and engineering.

The paper is now online at

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 39,500 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

To receive UH science news via email, sign up for UH-SciNews at

For additional news alerts about UH, follow us on Facebook at and Twitter at

Lisa Merkl | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>