Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expedition to undersea mountain yields new information about sub-seafloor structure

27.03.2012
Integrated Ocean Drilling Program geologists investigate seamount that formed in unusual way

Scientists recently concluded an expedition aboard the research vessel JOIDES Resolution to learn more about Atlantis Massif, an undersea mountain, or seamount, that formed in a very different way than the majority of the seafloor in the oceans.


This is a map of Atlantis Massif, showing the fault that borders this Atlantic Ocean seamount.
Credit: NOAA

Unlike volcanic seamounts, which are made of the basalt that's typical of most of the seafloor, Atlantis Massif includes rock types that are usually only found much deeper in the ocean crust, such as gabbro and peridotite.

The expedition, known as Integrated Ocean Drilling Program (IODP) Expedition 340T, marks the first time the geophysical properties of gabbroic rocks have successfully been measured directly in place, rather than via remote techniques such as seismic surveying.

With these measurements in hand, scientists can now infer how these hard-to-reach rocks will "look" on future seismic surveys, making it easier to map out geophysical structures beneath the seafloor.

"This is exciting because it means that we may be able to use seismic survey data to infer the pattern of seawater circulation within the deeper crust," says Donna Blackman of the Scripps Institution of Oceanography in La Jolla, Calif., co-chief scientist for Expedition 340T.

"This would be a key step for quantifying rates and volumes of chemical, possibly biological, exchange between the oceans and the crust."

Atlantis Massif sits on the flank of an oceanic spreading center that runs down the middle of the Atlantic Ocean.

As the tectonic plates separate, new crust is formed at the spreading center and a combination of stretching, faulting and the intrusion of magma from below shape the new seafloor.

Periods of reduced magma supplied from the underlying mantle result in the development of long-lived, large faults. Deep portions of the crust shift upward along these faults and may be exposed at the seafloor.

This process results in the formation of an oceanic core complex, or OCC, and is similar to the processes that formed the Basin and Range province of the Southwest United States.

"Recent discoveries from scientific ocean drilling have underlined that the process of creating new oceanic crust at seafloor spreading centers is complex," says Jamie Allan, IODP program director at the U.S. National Science Foundation (NSF), which co-funds the program.

"This work significantly adds to our ability to infer ocean crust structure and composition, including predicting how ocean crust has 'aged' in an area," says Allan, "thereby giving us new tools for understanding ocean crust creation from Earth's mantle."

Atlantis Massif is a classic example of an oceanic core complex.

Because it's relatively young--formed within the last million years--it's an ideal place, scientists say, to study how the interplay between faulting, magmatism and seawater circulation influences the evolution of an OCC within the crust.

"Vast ocean basins cover most of the Earth, yet their crust is formed in a narrow zone," says Blackman. "We're studying that source zone to understand how rifting and magmatism work together to form a new plate."

The JOIDES Resolution first visited Atlantis Massif about seven years ago; the science team on that expedition measured properties in gabbro.

But they focused on a shallower section, where pervasive seawater circulation had weathered the rock and changed its physical properties.

For the current expedition, the team did not drill new holes.

Rather, they lowered instruments into a deep existing hole drilled on a previous expedition, and made measurements from inside the hole.

The new measurements, at depths between 800 and 1,400 meters (about 2,600-4,600 feet) below the seafloor, include only a few narrow zones that had been altered by seawater circulation and/or by fault slip deformation.

The rest of the measurements focused on gabbroic rocks that have remained unaltered thus far.

The properties measured in the narrow zones of altered rock differ from the background properties measured in the unaltered gabbroic rocks.

The team found small differences in temperature next to two sub-seafloor faults, which suggests a slow percolation of seawater within those zones.

There were also significant differences in the speed at which seismic waves travel through the altered vs. unaltered zones.

"The expedition was a great opportunity to ground-truth our recent seismic analysis," says Alistair Harding, also from the Scripps Institution of Oceanography and a co-chief scientist for Expedition 340T.

"It also provides vital baseline data for further seismic work aimed at understanding the formation and alteration of the massif."

The Integrated Ocean Drilling Program (IODP) is an international research program dedicated to advancing scientific understanding of the Earth through drilling, coring and monitoring the subseafloor.

The JOIDES Resolution is a scientific research vessel managed by the U.S. Implementing Organization of IODP (USIO). Texas A&M University, Lamont-Doherty Earth Observatory of Columbia University and the Consortium for Ocean Leadership comprise the USIO.

Two lead agencies support the IODP: the U.S. National Science Foundation and Japan's Ministry of Education, Culture, Sports, Science and Technology.

Additional program support comes from the European Consortium for Ocean Research Drilling, the Australia-New Zealand IODP Consortium, India's Ministry of Earth Sciences, the People's Republic of China's Ministry of Science and Technology, and the Korea Institute of Geoscience and Mineral Resources.

For more information on the expedition, please visit the IODP Expedition 340T Photos.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>